Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 433-446 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the non-Abelian Hirota difference equation is directly related to a commutator identity on an associative algebra. Evolutions generated by similarity transformations of elements of this algebra lead to a linear difference equation. We develop a special dressing procedure that results in an integrable non-Abelian Hirota difference equation and propose two regular reduction procedures that lead to a set of known equations, Abelian or non-Abelian, and also to some new integrable equations.
Keywords: integrable equation, commutator identity, reduction.
@article{TMF_2016_187_3_a2,
     author = {A. K. Pogrebkov},
     title = {Commutator identities on associative algebras, {the~non-Abelian} {Hirota} difference equation and its reductions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {433--446},
     year = {2016},
     volume = {187},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a2/}
}
TY  - JOUR
AU  - A. K. Pogrebkov
TI  - Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 433
EP  - 446
VL  - 187
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a2/
LA  - ru
ID  - TMF_2016_187_3_a2
ER  - 
%0 Journal Article
%A A. K. Pogrebkov
%T Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 433-446
%V 187
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a2/
%G ru
%F TMF_2016_187_3_a2
A. K. Pogrebkov. Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 433-446. http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a2/

[1] V. E. Zakharov, E. I. Schulman, Phys. D, 1:2 (1980), 192–202 | DOI | MR | Zbl

[2] A. K. Pogrebkov, TMF, 154:3 (2008), 477–491 | DOI | DOI | MR | Zbl

[3] A. K. Pogrebkov, “2D Toda chain and associated commutator identity”, Geometry, Topology, and Mathematical Physics. S. P. Novikov's Seminar: 2006–2007, American Mathematical Society Translations: Series 2, 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 261–270 | MR

[4] A. K. Pogrebkov, Algebra i analiz, 22:3 (2010), 191–205 | DOI | MR | Zbl

[5] R. Hirota, J. Phys. Soc. Japan, 43:6 (1977), 2074–2078 | DOI | MR | Zbl

[6] R. Hirota, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR

[7] A. V. Zabrodin, TMF, 113:2 (1997), 179–230 | DOI | DOI | MR

[8] A. V. Zabrodin, TMF, 155:1 (2008), 74–93 | DOI | DOI | MR | Zbl

[9] T. Miwa, Proc. Japan Acad. Ser. A Math. Sci., 58:1 (1982), 9–12 | DOI | MR | Zbl

[10] L. V. Bogdanov, B. G. Konopelchenko, J. Math. Phys., 39:9 (1998), 4683–4700 | DOI | MR | Zbl

[11] L. V. Bogdanov, B. G. Konopelchenko, J. Math. Phys., 39:9 (1998), 4701–4728 | DOI | MR | Zbl

[12] J. J. C. Nimmo, J. Phys. A: Math. Gen., 39:18 (2006), 5053–5065 | DOI | MR | Zbl

[13] C. R. Gibson, J. J. C. Nimmo, Y. Ohta, J. Phys. A: Math. Theor., 40:19 (2007), 12607–12617 | MR

[14] A. Doliwa, Phys. Lett. A, 375:9 (2011), 1219–1224, arXiv: 1006.3380 | DOI | MR | Zbl

[15] I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin, Commun. Math. Phys., 188:2 (1997), 267–304, arXiv: hep-th/9604080 | DOI | MR | Zbl

[16] M. Boiti, F. Pempinelli, A. K. Pogrebkov, M. K. Polivanov, TMF, 93:2 (1992), 181–210 | DOI | MR | Zbl

[17] M. Boiti, F. Pempinelli, A. Pogrebkov, J. Math. Phys., 35:9 (1994), 4683–4718 | DOI | MR | Zbl

[18] I. M. Krichever, A. V. Zabrodin, UMN, 50:6(306) (1995), 3–56 | DOI | MR | Zbl