Commutator identities on associative algebras, the~non-Abelian Hirota difference equation and its reductions
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 433-446
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the non-Abelian Hirota difference equation is directly related to a commutator identity on an associative algebra. Evolutions generated by similarity transformations of elements of this algebra lead to a linear difference equation. We develop a special dressing procedure that results in an integrable non-Abelian Hirota difference equation and propose two regular reduction procedures that lead to a set of known equations, Abelian or non-Abelian, and also to some new integrable equations.
Keywords:
integrable equation, commutator identity, reduction.
@article{TMF_2016_187_3_a2,
author = {A. K. Pogrebkov},
title = {Commutator identities on associative algebras, {the~non-Abelian} {Hirota} difference equation and its reductions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {433--446},
publisher = {mathdoc},
volume = {187},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a2/}
}
TY - JOUR AU - A. K. Pogrebkov TI - Commutator identities on associative algebras, the~non-Abelian Hirota difference equation and its reductions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 433 EP - 446 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a2/ LA - ru ID - TMF_2016_187_3_a2 ER -
%0 Journal Article %A A. K. Pogrebkov %T Commutator identities on associative algebras, the~non-Abelian Hirota difference equation and its reductions %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 433-446 %V 187 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a2/ %G ru %F TMF_2016_187_3_a2
A. K. Pogrebkov. Commutator identities on associative algebras, the~non-Abelian Hirota difference equation and its reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 433-446. http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a2/