Fundamental constants in the theory of two-dimensional uniform spanning trees
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 580-594 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three characteristics of two-dimensional uniform spanning trees are nontrivially related to one another{:} the average density of a sandpile, the looping constant of a square lattice, and the return probability of a loop-erased random walk. We briefly trace the long history of the discovery of their unexpected rational values.
Keywords: Abelian sandpile model, loop-erased random walk, monomer–dimer model.
@article{TMF_2016_187_3_a10,
     author = {V. S. Pogosyan and V. B. Priezzhev},
     title = {Fundamental constants in the~theory of two-dimensional uniform spanning trees},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {580--594},
     year = {2016},
     volume = {187},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a10/}
}
TY  - JOUR
AU  - V. S. Pogosyan
AU  - V. B. Priezzhev
TI  - Fundamental constants in the theory of two-dimensional uniform spanning trees
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 580
EP  - 594
VL  - 187
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a10/
LA  - ru
ID  - TMF_2016_187_3_a10
ER  - 
%0 Journal Article
%A V. S. Pogosyan
%A V. B. Priezzhev
%T Fundamental constants in the theory of two-dimensional uniform spanning trees
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 580-594
%V 187
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a10/
%G ru
%F TMF_2016_187_3_a10
V. S. Pogosyan; V. B. Priezzhev. Fundamental constants in the theory of two-dimensional uniform spanning trees. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 580-594. http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a10/

[1] R. Pemantle, Ann. Probab., 19:4 (1991), 1559–1574 | DOI | MR | Zbl

[2] L. Levine, Y. Peres, Random Structures Algorithms, 45:1 (2014), 1–13 | DOI | MR | Zbl

[3] G. Kirchhoff, Ann. Phys., 148:12 (1847), 497–508 | DOI

[4] R. H. Fowler, G. S. Rushbrooke, Trans. Faraday Soc., 33 (1937), 1272–1294 | DOI

[5] P. W. Kasteleyn, Physica, 27:12 (1961), 1209–1225 | DOI | Zbl

[6] P. W. Kasteleyn, J. Math. Phys., 4:2 (1963), 287–293 | DOI | MR

[7] M. E. Fisher, Phys. Rev., 124:6 (1961), 1664–1672 | DOI | MR | Zbl

[8] H. N. V. Temperley, M. E. Fisher, Phil. Mag., 6:68 (1961), 1061–1063 | DOI | MR | Zbl

[9] M. E. Fisher, J. Stephenson, Phys. Rev., 132:4 (1963), 1411–1431 | DOI | MR | Zbl

[10] R. Kenyon, “Lectures on dimers”, Statistical Mechanics, IAS/Park City Mathematics Series, 16, eds. S. Sheffield, T. Spencer, AMS, Providence, RI, 2009, 191–230, arXiv: 0910.3129 | DOI | MR | Zbl

[11] H. N. V. Temperley, Combinatorics. The Proceedings of the British Combinatorial Conference (University College of Wales, Aberystwyth, 2–6 July, 1973), London Mathematical Society Lecture Note Series, 13, eds. T. P. McDonough, V. C. Mavron, Cambridge Univ. Press, London–New York, 1974, 202–204 | DOI | MR

[12] R. Burton, R. Pemantle, Ann. Probab., 21:3 (1993), 1329–1371 | DOI | MR | Zbl

[13] J. Bouttier, M. Bowick, E. Guitter, M. Jeng, Phys. Rev. E, 76:4 (2007), 041140, 15 pp., arXiv: 0706.1016 | DOI | MR

[14] V. S. Poghosyan, V. B. Priezzhev, P. Ruelle, J. Stat. Mech., 2011:10 (2011), P10004, 12 pp., arXiv: 1106.5453 | DOI

[15] G. F. Lawler, Duke Math. J., 47:3 (1980), 655–693 | DOI | MR | Zbl

[16] J. G. Propp, D. B. Wilson, J. of Algorithms, 27:2 (1998), 170–217 | DOI | MR | Zbl

[17] A. Z. Broder, “Generating random spanning trees”, 30th IEEE Annual Symposium on Foundations of Computer Science (Research Triangle Park, North Carolina, USA, 30 October – 1 November, 1989), IEEE, New York, 1989, 442–447 | DOI

[18] D. Aldous, SIAM J. Discrete Math., 3:4 (1990), 450–465 | DOI | MR | Zbl

[19] S. N. Majumdar, Phys. Rev. Lett., 68:15 (1992), 2329–2331 | DOI

[20] D. B. Wilson, “Generating random spanning trees more quickly than the cover time”, Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, Pennsylvania, May 22–24, 1996), ACM, New York, 1996, 296–303 | DOI | MR | Zbl

[21] P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett., 59:4 (1987), 381–384 | DOI

[22] D. Dhar, Phys. Rev. Lett., 64:14 (1990), 1613–1616 | DOI | MR | Zbl

[23] S. N. Majumdar, D. Dhar, Phys. A, 185:1 (1992), 129–145 | DOI

[24] R. Kenyon, Ann. Probab., 29:3 (2001), 1128–1137 | DOI | MR | Zbl

[25] N. Sh. Izmailian, V. B. Priezzhev, P. Ruelle, C.-K. Hu, Phys. Rev. Lett., 95:26 (2005), 260602, 4 pp., arXiv: cond-mat/0512703 | DOI | MR

[26] S. Papanikolaou, E. Luijten, E. Fradkin, Phys. Rev. B, 76:13 (2007), 134514, 28 pp., arXiv: cond-mat/0607316 | DOI

[27] J. G. Brankov, S. Y. Grigorev, V. B. Priezzhev, I. Y. Tipunin, J. Stat. Mech., 2008:11 (2008), P11017 | DOI

[28] S. Mahieu, P. Ruelle, Phys. Rev. E, 64 (2001), 066130, arXiv: 0810.2231 | DOI

[29] P. Ruelle, Phys. Lett. B, 539:1–2 (2002), 172–177, arXiv: hep-th/0203105 | DOI | MR | Zbl

[30] M. Jeng, G. Piroux, P. Ruelle, J. Stat. Mech., 2006:10 (2006), P10015 | DOI

[31] V. S. Poghosyan, S. Y. Grigorev, V. B. Priezzhev, P. Ruelle, J. Stat. Mech., 2010:7 (2010), P07025 | DOI

[32] O. Schramm, Israel J. Math., 118 (2000), 221–288 | DOI | MR | Zbl

[33] G. F. Lawler, O. Schramm, W. Werner, Ann. Probab., 32:18 (2004), 939–995 | MR | Zbl

[34] V. S. Poghosyan, V. B. Priezzhev, Acta Polytechnica, 51:2 (2011), 59–62 | MR

[35] V. B. Priezzhev, J. Stat. Phys., 74:4–5 (1994), 955–979 | DOI

[36] S. N. Majumdar, D. Dhar, J. Phys. A: Math. Gen., 24:7 (1991), L357–L362 | DOI

[37] D. Dhar, Phys. A, 369:1 (2006), 29–70 | DOI | MR

[38] C. Merino, Ann. Comb., 1:3 (1997), 253–259 | DOI | MR | Zbl

[39] R. Kenyon, Acta Math., 185:2 (2000), 239–286 | DOI | MR | Zbl

[40] R. W. Kenyon, D. B. Wilson, J. Amer. Math. Soc., 28:4 (2015), 985–1030, arXiv: 1107.3377 | DOI | MR | Zbl

[41] A. Kassel, R. Kenyon, W. Wu, Random two-component spanning forests, arXiv: 1203.4858 | MR

[42] X. Sun, D. B. Wilson, Sandpiles and unicycles on random planar maps, arXiv: 1506.08881 | MR

[43] S. Caracciolo, A. Sportiello, Exact integration of height probabilities in the Abelian sandpile model, arXiv: 1207.6074 | MR