Random walk of a~``drunk company"
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 350-359

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the collective behavior of a system of Brownian agents each of which moves orienting itself to the group as a whole. This system is the simplest model of the motion of a "united drunk company." For such a system, we use the functional integration technique to calculate the probability of transition from one point to another and to determine the time dependence of the probability density to find a member of the "drunk company" near a given point. It turns out that the system exhibits an interesting collective behavior at large times and this behavior cannot be described by the simplest mean-field-type approximation. We also obtain an exact solution in the case where one of the agents is "sober" and moves along a given trajectory. The obtained results are used to discuss whether such systems can be described by different theoretical approaches.
Keywords: Brownian agent, stochastic dynamics, functional integration method.
@article{TMF_2016_187_2_a9,
     author = {A. G. Semenov},
     title = {Random walk of a~``drunk company"},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--359},
     publisher = {mathdoc},
     volume = {187},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a9/}
}
TY  - JOUR
AU  - A. G. Semenov
TI  - Random walk of a~``drunk company"
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 350
EP  - 359
VL  - 187
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a9/
LA  - ru
ID  - TMF_2016_187_2_a9
ER  - 
%0 Journal Article
%A A. G. Semenov
%T Random walk of a~``drunk company"
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 350-359
%V 187
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a9/
%G ru
%F TMF_2016_187_2_a9
A. G. Semenov. Random walk of a~``drunk company". Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 350-359. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a9/