Random walk of a “drunk company"
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 350-359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the collective behavior of a system of Brownian agents each of which moves orienting itself to the group as a whole. This system is the simplest model of the motion of a "united drunk company." For such a system, we use the functional integration technique to calculate the probability of transition from one point to another and to determine the time dependence of the probability density to find a member of the "drunk company" near a given point. It turns out that the system exhibits an interesting collective behavior at large times and this behavior cannot be described by the simplest mean-field-type approximation. We also obtain an exact solution in the case where one of the agents is "sober" and moves along a given trajectory. The obtained results are used to discuss whether such systems can be described by different theoretical approaches.
Keywords: Brownian agent, stochastic dynamics, functional integration method.
@article{TMF_2016_187_2_a9,
     author = {A. G. Semenov},
     title = {Random walk of a~{\textquotedblleft}drunk company"},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--359},
     year = {2016},
     volume = {187},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a9/}
}
TY  - JOUR
AU  - A. G. Semenov
TI  - Random walk of a “drunk company"
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 350
EP  - 359
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a9/
LA  - ru
ID  - TMF_2016_187_2_a9
ER  - 
%0 Journal Article
%A A. G. Semenov
%T Random walk of a “drunk company"
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 350-359
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a9/
%G ru
%F TMF_2016_187_2_a9
A. G. Semenov. Random walk of a “drunk company". Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 350-359. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a9/

[1] D. Helbing, Rev. Modern Phys., 73:4 (2001), 1067–1141, arXiv: cond-mat/0012229 | DOI

[2] V. M. Yakovenko, J. Barkley Rosser, Jr., Rev. Modern Phys., 81:4 (2009), 1703–1725, arXiv: 0905.1518 | DOI

[3] F. Schweitzer, Browning Agents and Active Particles, Springer, Berlin, 2003 | MR

[4] T. Vicsek, A. Zafeiris, Phys. Rep., 517:3–4 (2012), 71–140 | DOI

[5] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Top., 202:1 (2012), 1–162 | DOI

[6] G. Junker, Supersymmetric Methods in Quantum and Statistical Physics, Springer, Berlin, 1996 | DOI | MR | Zbl

[7] H. Risken, The Fokker–Planck Equation. Methods of Solution and Applications, Springer Series in Synergetics, 18, Springer, Berlin, 1989 | DOI | MR | Zbl

[8] F. Langouche, D. Roekaerts, E. Tirapegui, Functional Integration and Semiclassical Expansions, Mathematics and Its Applications, 10, Dordrecht, 1982 | DOI | MR

[9] T. D. Frank, Nonlinear Fokker–Planck Equations. Fundamentals and Applications, Springer, Berlin, 2005 | MR | Zbl

[10] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR | MR | Zbl | Zbl