Quantum mechanical model in gravity theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 310-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model of a real massive scalar field defined as homogeneous on a $d$-dimensional sphere such that the sphere radius, time scale, and scalar field are related by the equations of the general theory of relativity. We quantize this system with three degrees of freedom, define the observables, and find dynamical mean values of observables in the regime where the scalar field mass is much less than the Planck mass.
Keywords: general relativity, quantization of gravity, quantum mechanics, quantization of gauge theories.
@article{TMF_2016_187_2_a6,
     author = {V. V. Losyakov},
     title = {Quantum mechanical model in gravity theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {310--322},
     year = {2016},
     volume = {187},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a6/}
}
TY  - JOUR
AU  - V. V. Losyakov
TI  - Quantum mechanical model in gravity theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 310
EP  - 322
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a6/
LA  - ru
ID  - TMF_2016_187_2_a6
ER  - 
%0 Journal Article
%A V. V. Losyakov
%T Quantum mechanical model in gravity theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 310-322
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a6/
%G ru
%F TMF_2016_187_2_a6
V. V. Losyakov. Quantum mechanical model in gravity theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 310-322. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a6/

[1] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR | MR | Zbl

[2] Zh. Emkh, Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | Zbl

[3] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR | Zbl

[4] P. A. M. Dirak, Sobranie nauchnykh trudov, v. IV, Gravitatsiya i kosmologiya. Vospominaniya i razmyshleniya (lektsii, nauchnye stati 1937–1984\;gg.), Fizmatlit, M., 2005

[5] D. M. Gitman, I. V. Tyutin, Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | DOI | MR | MR | Zbl | Zbl

[6] D. Z. Freedman, P. van Nieuwenhuizen, S. Ferrara, Phys. Rev. D, 13:12 (1976), 3214–3218 | DOI | MR

[7] A. Yu. Morozov, UFN, 162:8 (1992), 83–175 | DOI | DOI

[8] A. V. Marshakov, UFN, 172:9 (2002), 977–1020 | DOI | DOI

[9] A. M. Polyakov, Kalibrovochnye polya i struny, ITF im. L. D. Landau, Chernogolovka, 1995 | MR | Zbl

[10] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1988 | MR | MR | Zbl

[11] P. A. M. Dirak, Lektsii po kvantovoi mekhanike, Mir, M., 1968 | MR | Zbl

[12] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983 | DOI | MR | MR | Zbl