Ideals generated by traces in the algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 297-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The associative algebra of symplectic reflections $\mathcal H:=H_{1,\nu_1,\nu_2} (I_2(2m))$ based on the group generated by the root system $I_2(2m)$ depends on two parameters, $\nu_1$ and $\nu_2$. For each value of these parameters, the algebra admits an $m$-dimensional space of traces. A trace $\operatorname{tr}$ is said to be degenerate if the corresponding symmetric bilinear form $B_{\operatorname{tr}}(x,y)=\operatorname{tr}(xy)$ is degenerate. We find all values of the parameters $\nu_1$ and $\nu_2$ for which the space of traces contains degenerate traces and the algebra $\mathcal H$ consequently has a two-sided ideal. It turns out that a linear combination of degenerate traces is also a degenerate trace. For the $\nu_1$ and $\nu_2$ values corresponding to degenerate traces, we find the dimensions of the space of degenerate traces.
Keywords: algebra of symplectic reflections, ideal, trace, group algebra.
Mots-clés : supertrace, Coxeter group
@article{TMF_2016_187_2_a5,
     author = {S. E. Konstein and I. V. Tyutin},
     title = {Ideals generated by traces in the~algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {297--309},
     year = {2016},
     volume = {187},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a5/}
}
TY  - JOUR
AU  - S. E. Konstein
AU  - I. V. Tyutin
TI  - Ideals generated by traces in the algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 297
EP  - 309
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a5/
LA  - ru
ID  - TMF_2016_187_2_a5
ER  - 
%0 Journal Article
%A S. E. Konstein
%A I. V. Tyutin
%T Ideals generated by traces in the algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 297-309
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a5/
%G ru
%F TMF_2016_187_2_a5
S. E. Konstein; I. V. Tyutin. Ideals generated by traces in the algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 297-309. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a5/

[1] S. E. Konstein, R. Stekolshchik, Jour. Nonlinear Math. Phys., 20:2 (2013), 295–308 | DOI | MR

[2] P. Etingof, V. Ginzburg, Inv. Math., 147:2 (2002), 243–348 | DOI | MR | Zbl

[3] M. A. Vasilev, Pisma v ZhETF, 50:8 (1990), 344–347 ; M. A. Vasiliev, Internat. J. Modern Phys. A, 6:7 (1991), 1115–1135 | MR | DOI | MR | Zbl

[4] S. E. Konshtein, TMF, 116:1 (1998), 122–133 | DOI | DOI | MR | Zbl

[5] I. Losev, Selecta Math. (N. S.), 18:1 (2012), 179–251, arXiv: 1001.0239 | DOI | MR | Zbl

[6] D. S. Passman, Infinite Crossed Products, Pure and Applied Mathematics, 135, Academic Press, Boston, MA, 1989 | MR | Zbl

[7] S. E. Konstein, I. V. Tyutin, J. Nonlinear Math. Phys., 20:2 (2013), 271–294, arXiv: ; S. E. Konstein, Supertraces on the superalgebra of observables of rational Calogero model based on the root system, arXiv: 1211.6600math-ph/9904032 | DOI | MR

[8] S. E. Konstein, M. A. Vasiliev, J. Math. Phys., 37:6 (1996), 2872–2891 | DOI | MR | Zbl