Ideals generated by traces in the~algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 297-309
Voir la notice de l'article provenant de la source Math-Net.Ru
The associative algebra of symplectic reflections $\mathcal H:=H_{1,\nu_1,\nu_2} (I_2(2m))$ based on the group generated by the root system $I_2(2m)$ depends on two parameters, $\nu_1$ and $\nu_2$. For each value of these parameters, the algebra admits an $m$-dimensional space of traces. A trace $\operatorname{tr}$ is said to be degenerate if the corresponding symmetric bilinear form $B_{\operatorname{tr}}(x,y)=\operatorname{tr}(xy)$ is degenerate. We find all values of the parameters $\nu_1$ and $\nu_2$ for which the space of traces contains degenerate traces and the algebra $\mathcal H$ consequently has a two-sided ideal. It turns out that a linear combination of degenerate traces is also a degenerate trace. For the $\nu_1$ and $\nu_2$ values corresponding to degenerate traces, we find the dimensions of the space of degenerate traces.
Keywords:
algebra of symplectic reflections, ideal, trace, group algebra.
Mots-clés : supertrace, Coxeter group
Mots-clés : supertrace, Coxeter group
@article{TMF_2016_187_2_a5,
author = {S. E. Konstein and I. V. Tyutin},
title = {Ideals generated by traces in the~algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {297--309},
publisher = {mathdoc},
volume = {187},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a5/}
}
TY - JOUR
AU - S. E. Konstein
AU - I. V. Tyutin
TI - Ideals generated by traces in the~algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2016
SP - 297
EP - 309
VL - 187
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a5/
LA - ru
ID - TMF_2016_187_2_a5
ER -
%0 Journal Article
%A S. E. Konstein
%A I. V. Tyutin
%T Ideals generated by traces in the~algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 297-309
%V 187
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a5/
%G ru
%F TMF_2016_187_2_a5
S. E. Konstein; I. V. Tyutin. Ideals generated by traces in the~algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 297-309. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a5/