$SU(2)/SL(2)$ knot invariants and Kontsevich--Soibelman monodromies
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 263-282

Voir la notice de l'article provenant de la source Math-Net.Ru

We review the Reshetikhin–Turaev approach for constructing noncompact knot invariants involving $R$-matrices associated with infinite-dimensional representations, primarily those constructed from the Faddeev quantum dilogarithm. The corresponding formulas can be obtained from modular transformations of conformal blocks as their Kontsevich–Soibelman monodromies and are presented in the form of transcendental integrals, where the main issue is working with the integration contours. We discuss possibilities for extracting more explicit and convenient expressions that can be compared with the ordinary (compact) knot polynomials coming from finite-dimensional representations of simple Lie algebras, with their limits and properties. In particular, the quantum A-polynomials and difference equations for colored Jones polynomials are the same as in the compact case, but the equations in the noncompact case are homogeneous and have a nontrivial right-hand side for ordinary Jones polynomials.
Keywords: Chern–Simons theory, Wilson average, modular double
Mots-clés : Kontsevich–Soibelman monodromy, $R$-matrix, quantum A-polynomial.
@article{TMF_2016_187_2_a3,
     author = {D. M. Galakhov and A. D. Mironov and A. Yu. Morozov},
     title = {$SU(2)/SL(2)$ knot invariants and {Kontsevich--Soibelman} monodromies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--282},
     publisher = {mathdoc},
     volume = {187},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/}
}
TY  - JOUR
AU  - D. M. Galakhov
AU  - A. D. Mironov
AU  - A. Yu. Morozov
TI  - $SU(2)/SL(2)$ knot invariants and Kontsevich--Soibelman monodromies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 263
EP  - 282
VL  - 187
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/
LA  - ru
ID  - TMF_2016_187_2_a3
ER  - 
%0 Journal Article
%A D. M. Galakhov
%A A. D. Mironov
%A A. Yu. Morozov
%T $SU(2)/SL(2)$ knot invariants and Kontsevich--Soibelman monodromies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 263-282
%V 187
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/
%G ru
%F TMF_2016_187_2_a3
D. M. Galakhov; A. D. Mironov; A. Yu. Morozov. $SU(2)/SL(2)$ knot invariants and Kontsevich--Soibelman monodromies. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 263-282. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/