Mots-clés : Kontsevich–Soibelman monodromy, $R$-matrix, quantum A-polynomial.
@article{TMF_2016_187_2_a3,
author = {D. M. Galakhov and A. D. Mironov and A. Yu. Morozov},
title = {$SU(2)/SL(2)$ knot invariants and {Kontsevich{\textendash}Soibelman} monodromies},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {263--282},
year = {2016},
volume = {187},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/}
}
TY - JOUR AU - D. M. Galakhov AU - A. D. Mironov AU - A. Yu. Morozov TI - $SU(2)/SL(2)$ knot invariants and Kontsevich–Soibelman monodromies JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 263 EP - 282 VL - 187 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/ LA - ru ID - TMF_2016_187_2_a3 ER -
D. M. Galakhov; A. D. Mironov; A. Yu. Morozov. $SU(2)/SL(2)$ knot invariants and Kontsevich–Soibelman monodromies. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 263-282. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/
[1] J. W. Alexander, Trans. Amer. Math. Soc., 30:2 (1928) ; J. H. Conway, “An enumeration of knots and links, and some of their algebraic properties”, Computational Problems in Abstract Algebra (Science Research Council Atlas Computer Laboratory, Oxford, 29 August – 2 September, 1967), ed. J. Leech, Pergamon Press, Oxford, New York, 1970, 329–358 | DOI | MR | Zbl | MR | Zbl
[2] V. F. R. Jones, Invent. Math., 72:1 (1983), 1–25 ; Bull. Amer. Math. Soc. (N. S.), 12:1 (1985), 103–111 ; Ann. Math. (2), 126:2 (1987), 335–388 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[3] S.-S. Chern, J. Simons, Ann. Math. (2), 99:1 (1974), 48–69 | DOI | MR | Zbl
[4] E. Witten, Commun. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl
[5] E. Guadagnini, M. Martellini, M. Mintchev, “Chern–Simons field theory and quantum groups”, Quantum Groups, Proceedings of the 8th International Workshop on Mathematical Physics (Clausthal, Germany, July 19–26, 1989), Lecture Notes in Physics, 370, eds. H. D. Doebner, J. D. Hennig, World Sci., Singapore, 1990, 307–317 | DOI | MR | Zbl
[6] A. Mironov, A. Morozov, And. Morozov, JHEP, 03 (2012), 034, 33 pp., arXiv: ; H. Itoyama, A. Mironov, A. Morozov, And. Morozov, Internat. J. Modern Phys. A, 27:3–4 (2012), 1250009, 85 pp., arXiv: ; 28:3–4 (2013), 1340009, 81 pp., arXiv: ; А. С. Анохина, А. А. Морозов, ТМФ, 178:1 (2014), 3–68, arXiv: ; A. Anokhina, A. Mironov, A. Morozov, And. Morozov, Nucl. Phys. B, 868:1 (2013), 271–313, arXiv: ; A. Anokhina, A. Mironov, A. Morozov, And. Morozov, Adv. High. Energy Phys., 2013 (2013), 931830, 12 pp., arXiv: 1112.26541204.47851209.63041307.22161207.02791304.1486 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[7] A. Morozov, A. Smirnov, Nucl. Phys. B, 835:3 (2010), 284–313, arXiv: ; A. Smirnov, Notes on Chern–Simons theory in the temporal gauge, arXiv: 1001.20030910.5011 | DOI | MR | Zbl
[8] L. D. Faddeev, “Modular double of a quantum group”, Conférence Moshé Flato 1999: Quantization, deformation, and symmetries (Dijon, France, September 5–8, 1999), v. I, Mathematical Physics Studies, 21, eds. G. Dito, D. Sternheimer, Kluwer, Dordrecht, 2000, 149–156, arXiv: math/9912078 | MR | Zbl
[9] D. Galakhov, A. Mironov, A. Morozov, ZhETF, 147:3 (2015), 623–663, arXiv: 1410.8482 | DOI | DOI
[10] K. Hikami, R. Inoue, J. Knot Theory Ramifications, 23:1 (2014), 1450006, 33 pp., arXiv: ; Algebr. Geom. Topol., 15:4 (2015), 2175–2194, arXiv: ; J. Phys. A: Math. Theor., 47:47 (2014), 474006, 21 pp., arXiv: 1212.60421304.47761404.2009 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[11] K. Hikami, Internat. J. Modern Phys. A, 16:19 (2001), 3309–3333, arXiv: ; J. Geom. Phys., 57:9 (2007), 1895–1940, arXiv: math-ph/0105039math/0604094 | DOI | MR | Zbl | DOI | MR | Zbl
[12] R. M. Kashaev, Algebra i analiz, 8:4 (1996), 63–74, arXiv: q-alg/9503005 | MR | Zbl
[13] T. Dimofte, S. Gukov, J. Lenells, D. Zagier, Commun. Number Theory Phys., 3:2 (200), 363–443, arXiv: 0903.2472 | DOI | MR | Zbl
[14] D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, A. Sleptsov, Nucl. Phys. B, 899 (2015), 194–228, arXiv: 1502.02621 | DOI | MR | Zbl
[15] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl
[16] L. Alvarez-Gaumé, C. Gomez, S. Sierra, Phys. Lett. B, 220:1–2 (1989), 142 | DOI | MR | Zbl
[17] R. K. Kaul, T. R. Govindarajan, Nucl. Phys. B, 380:1–2 (1992), 293–333, arXiv: ; P. Ramadevi, T. R. Govindarajan, R. K. Kaul, Nucl. Phys. B, 402:1–2 (1993), 548–566, arXiv: ; Nucl. Phys. B, 422:1–2 (1994), 291–306, arXiv: ; P. Ramadevi, T. Sarkar, Nucl. Phys. B, 600:3 (2001), 487–511, arXiv: ; Zodinmawia, P. Ramadevi, Nucl. Phys. B, 870:1 (2013), 205–242, arXiv: ; Reformulated invariants for non-torus knots and links, arXiv: hep-th/9111063hep-th/9212110hep-th/9312215hep-th/00091881107.39181209.1346 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[18] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR | Zbl
[19] A. N. Kirillov, N. Yu. Reshetikhin, Representations of the algebra $Uq(sl(2))$, $q$-orthogonal polynomials and invariants of links, Preprint LOMI E-9-88, LOMI, Leningrad, 1988 | MR
[20] H. R. Morton, S. G. Lukac, J. Knot Theory Ramifications, 12:3 (2003), 395–416, arXiv: math.GT/0108011 | DOI | MR | Zbl
[21] C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, W. H. Freeman, New York, 1994 | MR | Zbl
[22] S. Nawata, P. Ramadevi, Zodinmawia, J. Knot Theory Ramifications, 22:13 (2013), 1350078, 58 pp., arXiv: ; D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, A. Sleptsov, Phys. Lett. B, 743 (2015), 71–74, arXiv: ; A. Mironov, A. Morozov, A. Sleptsov, JHEP, 07 (2015), 069, 34 pp., arXiv: ; S. Nawata, P. Ramadevi, V. K. Singh, Colored HOMFLY polynomials can distinguish mutant knots, arXiv: ; A. Mironov, A. Morozov, And. Morozov, P. Ramadevi, V. K. Singh, JHEP, 07 (2015), 109, 68 pp., arXiv: ; A. Mironov, A. Morozov, Nucl. Phys. B, 899 (2015), 395–413, arXiv: ; A. Mironov, A. Morozov, An. Morozov, A. Sleptsov, Colored knot polynomials. HOMFLY in representation $[2,1]$, Internat. J. Modern Phys. A, 30, no. 26, 2015, 40 pp., arXiv: 1302.51441412.26161412.84321504.003641504.003711506.003391508.02870 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | DOI | MR | Zbl | DOI | MR | Zbl
[23] S. Garoufalidis, T. T. Q. Lê, Geom. Topol., 9 (2005), 1253–1293, arXiv: math/0309214 | DOI | MR | Zbl
[24] H. Itoyama, A. Mironov, A. Morozov, And. Morozov, JHEP, 07 (2012), 131, 21 pp., arXiv: ; A. Mironov, A. Morozov, And. Morozov, AIP Conf. Proc., 1562:1 (2013), 123–155, arXiv: 1203.59781306.3197 | DOI | MR | DOI
[25] J. E. Andersen, R. Kashaev, A TQFT from quantum Teichmüller theory, arXiv: 1109.6295 | MR
[26] R. M. Kashaev, “On the spectrum of Dehn twists in quantum Teichmüller theory”, Physics and Combinatorics (Nagoya University, 21 – 26 August, 2000), eds. A. N. Kirillov, N. Liskova, World Sci., Singapore, 2001, 63–81, arXiv: math/0008148 | DOI | MR | Zbl
[27] A. Bytsko, J. Teschner, Commun. Math. Phys., 240:1–2 (2003), 171–196, arXiv: math/0208191 | DOI | MR | Zbl
[28] D. Cooper, M. Culler, H. Gillet, D. D. Long, P. B. Shalen, Invent. Math., 118:1 (1994), 47–84 | DOI | MR | Zbl
[29] S. Garoufalidis, “On the characteristic and deformation varieties of a knot”, Proceedings of the Casson Fest (Fayetteville, AR, USA, April 10–12, 2003; Austin, TX, USA, May 19–21, 2003), Geometry and Topology Monographs, 7, eds. C. Gordon, Y. Rieck, Geometry and Topology Publ., Coventry, 2004, 291–309, arXiv: math/0306230 | DOI | MR | Zbl
[30] T. Dimofte, Adv. Theor. Math. Phys., 17:3 (2013), 479–599, arXiv: 1102.4847 | DOI | MR | Zbl
[31] K. Hikami, Nucl. Phys. B, 773:3 (2007), 184–202, arXiv: math-ph/0407043 | DOI | MR | Zbl
[32] D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, A. V. Smirnov, TMF, 172:1 (2012), 73–99, arXiv: 1104.2589 | DOI | MR