$SU(2)/SL(2)$ knot invariants and Kontsevich–Soibelman monodromies
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 263-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the Reshetikhin–Turaev approach for constructing noncompact knot invariants involving $R$-matrices associated with infinite-dimensional representations, primarily those constructed from the Faddeev quantum dilogarithm. The corresponding formulas can be obtained from modular transformations of conformal blocks as their Kontsevich–Soibelman monodromies and are presented in the form of transcendental integrals, where the main issue is working with the integration contours. We discuss possibilities for extracting more explicit and convenient expressions that can be compared with the ordinary (compact) knot polynomials coming from finite-dimensional representations of simple Lie algebras, with their limits and properties. In particular, the quantum A-polynomials and difference equations for colored Jones polynomials are the same as in the compact case, but the equations in the noncompact case are homogeneous and have a nontrivial right-hand side for ordinary Jones polynomials.
Keywords: Chern–Simons theory, Wilson average, modular double
Mots-clés : Kontsevich–Soibelman monodromy, $R$-matrix, quantum A-polynomial.
@article{TMF_2016_187_2_a3,
     author = {D. M. Galakhov and A. D. Mironov and A. Yu. Morozov},
     title = {$SU(2)/SL(2)$ knot invariants and {Kontsevich{\textendash}Soibelman} monodromies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--282},
     year = {2016},
     volume = {187},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/}
}
TY  - JOUR
AU  - D. M. Galakhov
AU  - A. D. Mironov
AU  - A. Yu. Morozov
TI  - $SU(2)/SL(2)$ knot invariants and Kontsevich–Soibelman monodromies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 263
EP  - 282
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/
LA  - ru
ID  - TMF_2016_187_2_a3
ER  - 
%0 Journal Article
%A D. M. Galakhov
%A A. D. Mironov
%A A. Yu. Morozov
%T $SU(2)/SL(2)$ knot invariants and Kontsevich–Soibelman monodromies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 263-282
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/
%G ru
%F TMF_2016_187_2_a3
D. M. Galakhov; A. D. Mironov; A. Yu. Morozov. $SU(2)/SL(2)$ knot invariants and Kontsevich–Soibelman monodromies. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 263-282. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a3/

[1] J. W. Alexander, Trans. Amer. Math. Soc., 30:2 (1928) ; J. H. Conway, “An enumeration of knots and links, and some of their algebraic properties”, Computational Problems in Abstract Algebra (Science Research Council Atlas Computer Laboratory, Oxford, 29 August – 2 September, 1967), ed. J. Leech, Pergamon Press, Oxford, New York, 1970, 329–358 | DOI | MR | Zbl | MR | Zbl

[2] V. F. R. Jones, Invent. Math., 72:1 (1983), 1–25 ; Bull. Amer. Math. Soc. (N. S.), 12:1 (1985), 103–111 ; Ann. Math. (2), 126:2 (1987), 335–388 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[3] S.-S. Chern, J. Simons, Ann. Math. (2), 99:1 (1974), 48–69 | DOI | MR | Zbl

[4] E. Witten, Commun. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl

[5] E. Guadagnini, M. Martellini, M. Mintchev, “Chern–Simons field theory and quantum groups”, Quantum Groups, Proceedings of the 8th International Workshop on Mathematical Physics (Clausthal, Germany, July 19–26, 1989), Lecture Notes in Physics, 370, eds. H. D. Doebner, J. D. Hennig, World Sci., Singapore, 1990, 307–317 | DOI | MR | Zbl

[6] A. Mironov, A. Morozov, And. Morozov, JHEP, 03 (2012), 034, 33 pp., arXiv: ; H. Itoyama, A. Mironov, A. Morozov, And. Morozov, Internat. J. Modern Phys. A, 27:3–4 (2012), 1250009, 85 pp., arXiv: ; 28:3–4 (2013), 1340009, 81 pp., arXiv: ; А. С. Анохина, А. А. Морозов, ТМФ, 178:1 (2014), 3–68, arXiv: ; A. Anokhina, A. Mironov, A. Morozov, And. Morozov, Nucl. Phys. B, 868:1 (2013), 271–313, arXiv: ; A. Anokhina, A. Mironov, A. Morozov, And. Morozov, Adv. High. Energy Phys., 2013 (2013), 931830, 12 pp., arXiv: 1112.26541204.47851209.63041307.22161207.02791304.1486 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[7] A. Morozov, A. Smirnov, Nucl. Phys. B, 835:3 (2010), 284–313, arXiv: ; A. Smirnov, Notes on Chern–Simons theory in the temporal gauge, arXiv: 1001.20030910.5011 | DOI | MR | Zbl

[8] L. D. Faddeev, “Modular double of a quantum group”, Conférence Moshé Flato 1999: Quantization, deformation, and symmetries (Dijon, France, September 5–8, 1999), v. I, Mathematical Physics Studies, 21, eds. G. Dito, D. Sternheimer, Kluwer, Dordrecht, 2000, 149–156, arXiv: math/9912078 | MR | Zbl

[9] D. Galakhov, A. Mironov, A. Morozov, ZhETF, 147:3 (2015), 623–663, arXiv: 1410.8482 | DOI | DOI

[10] K. Hikami, R. Inoue, J. Knot Theory Ramifications, 23:1 (2014), 1450006, 33 pp., arXiv: ; Algebr. Geom. Topol., 15:4 (2015), 2175–2194, arXiv: ; J. Phys. A: Math. Theor., 47:47 (2014), 474006, 21 pp., arXiv: 1212.60421304.47761404.2009 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[11] K. Hikami, Internat. J. Modern Phys. A, 16:19 (2001), 3309–3333, arXiv: ; J. Geom. Phys., 57:9 (2007), 1895–1940, arXiv: math-ph/0105039math/0604094 | DOI | MR | Zbl | DOI | MR | Zbl

[12] R. M. Kashaev, Algebra i analiz, 8:4 (1996), 63–74, arXiv: q-alg/9503005 | MR | Zbl

[13] T. Dimofte, S. Gukov, J. Lenells, D. Zagier, Commun. Number Theory Phys., 3:2 (200), 363–443, arXiv: 0903.2472 | DOI | MR | Zbl

[14] D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, A. Sleptsov, Nucl. Phys. B, 899 (2015), 194–228, arXiv: 1502.02621 | DOI | MR | Zbl

[15] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[16] L. Alvarez-Gaumé, C. Gomez, S. Sierra, Phys. Lett. B, 220:1–2 (1989), 142 | DOI | MR | Zbl

[17] R. K. Kaul, T. R. Govindarajan, Nucl. Phys. B, 380:1–2 (1992), 293–333, arXiv: ; P. Ramadevi, T. R. Govindarajan, R. K. Kaul, Nucl. Phys. B, 402:1–2 (1993), 548–566, arXiv: ; Nucl. Phys. B, 422:1–2 (1994), 291–306, arXiv: ; P. Ramadevi, T. Sarkar, Nucl. Phys. B, 600:3 (2001), 487–511, arXiv: ; Zodinmawia, P. Ramadevi, Nucl. Phys. B, 870:1 (2013), 205–242, arXiv: ; Reformulated invariants for non-torus knots and links, arXiv: hep-th/9111063hep-th/9212110hep-th/9312215hep-th/00091881107.39181209.1346 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[18] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR | Zbl

[19] A. N. Kirillov, N. Yu. Reshetikhin, Representations of the algebra $Uq(sl(2))$, $q$-orthogonal polynomials and invariants of links, Preprint LOMI E-9-88, LOMI, Leningrad, 1988 | MR

[20] H. R. Morton, S. G. Lukac, J. Knot Theory Ramifications, 12:3 (2003), 395–416, arXiv: math.GT/0108011 | DOI | MR | Zbl

[21] C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, W. H. Freeman, New York, 1994 | MR | Zbl

[22] S. Nawata, P. Ramadevi, Zodinmawia, J. Knot Theory Ramifications, 22:13 (2013), 1350078, 58 pp., arXiv: ; D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, A. Sleptsov, Phys. Lett. B, 743 (2015), 71–74, arXiv: ; A. Mironov, A. Morozov, A. Sleptsov, JHEP, 07 (2015), 069, 34 pp., arXiv: ; S. Nawata, P. Ramadevi, V. K. Singh, Colored HOMFLY polynomials can distinguish mutant knots, arXiv: ; A. Mironov, A. Morozov, And. Morozov, P. Ramadevi, V. K. Singh, JHEP, 07 (2015), 109, 68 pp., arXiv: ; A. Mironov, A. Morozov, Nucl. Phys. B, 899 (2015), 395–413, arXiv: ; A. Mironov, A. Morozov, An. Morozov, A. Sleptsov, Colored knot polynomials. HOMFLY in representation $[2,1]$, Internat. J. Modern Phys. A, 30, no. 26, 2015, 40 pp., arXiv: 1302.51441412.26161412.84321504.003641504.003711506.003391508.02870 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[23] S. Garoufalidis, T. T. Q. Lê, Geom. Topol., 9 (2005), 1253–1293, arXiv: math/0309214 | DOI | MR | Zbl

[24] H. Itoyama, A. Mironov, A. Morozov, And. Morozov, JHEP, 07 (2012), 131, 21 pp., arXiv: ; A. Mironov, A. Morozov, And. Morozov, AIP Conf. Proc., 1562:1 (2013), 123–155, arXiv: 1203.59781306.3197 | DOI | MR | DOI

[25] J. E. Andersen, R. Kashaev, A TQFT from quantum Teichmüller theory, arXiv: 1109.6295 | MR

[26] R. M. Kashaev, “On the spectrum of Dehn twists in quantum Teichmüller theory”, Physics and Combinatorics (Nagoya University, 21 – 26 August, 2000), eds. A. N. Kirillov, N. Liskova, World Sci., Singapore, 2001, 63–81, arXiv: math/0008148 | DOI | MR | Zbl

[27] A. Bytsko, J. Teschner, Commun. Math. Phys., 240:1–2 (2003), 171–196, arXiv: math/0208191 | DOI | MR | Zbl

[28] D. Cooper, M. Culler, H. Gillet, D. D. Long, P. B. Shalen, Invent. Math., 118:1 (1994), 47–84 | DOI | MR | Zbl

[29] S. Garoufalidis, “On the characteristic and deformation varieties of a knot”, Proceedings of the Casson Fest (Fayetteville, AR, USA, April 10–12, 2003; Austin, TX, USA, May 19–21, 2003), Geometry and Topology Monographs, 7, eds. C. Gordon, Y. Rieck, Geometry and Topology Publ., Coventry, 2004, 291–309, arXiv: math/0306230 | DOI | MR | Zbl

[30] T. Dimofte, Adv. Theor. Math. Phys., 17:3 (2013), 479–599, arXiv: 1102.4847 | DOI | MR | Zbl

[31] K. Hikami, Nucl. Phys. B, 773:3 (2007), 184–202, arXiv: math-ph/0407043 | DOI | MR | Zbl

[32] D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, A. V. Smirnov, TMF, 172:1 (2012), 73–99, arXiv: 1104.2589 | DOI | MR