Free fermions, $W$-algebras, and isomonodromic deformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 232-262 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the theory of multicomponent free massless fermions in two dimensions and use it to construct representations of $W$-algebras at integer Virasoro central charges. We define the vertex operators in this theory in terms of solutions of the corresponding isomonodromy problem. We use this construction to obtain some new insights into tau functions of the multicomponent Toda-type hierarchies for the class of solutions given by the isomonodromy vertex operators and to obtain a useful representation for tau functions of isomonodromic deformations.
Keywords: two-dimensional conformal field theory, $W$-algebra
Mots-clés : isomonodromic deformation.
@article{TMF_2016_187_2_a2,
     author = {P. G. Gavrilenko and A. V. Marshakov},
     title = {Free fermions, $W$-algebras, and isomonodromic deformations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {232--262},
     year = {2016},
     volume = {187},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a2/}
}
TY  - JOUR
AU  - P. G. Gavrilenko
AU  - A. V. Marshakov
TI  - Free fermions, $W$-algebras, and isomonodromic deformations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 232
EP  - 262
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a2/
LA  - ru
ID  - TMF_2016_187_2_a2
ER  - 
%0 Journal Article
%A P. G. Gavrilenko
%A A. V. Marshakov
%T Free fermions, $W$-algebras, and isomonodromic deformations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 232-262
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a2/
%G ru
%F TMF_2016_187_2_a2
P. G. Gavrilenko; A. V. Marshakov. Free fermions, $W$-algebras, and isomonodromic deformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 232-262. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a2/

[1] A. B. Zamolodchikov, TMF, 65:3 (1985), 347–359 | DOI | MR

[2] V. A. Fateev, A. B. Zamolodchikov, Nucl. Phys B, 280:4 (1987), 644–660 | DOI | MR

[3] V. A. Fateev, S. L. Lukyanov, Internat. J. Modern Phys. A, 3:2 (1988), 507–520 | DOI | MR

[4] P. Boukok, G. Vatts, TMF, 98:3 (1994), 500–508, arXiv: hep-th/9309146 | DOI | MR | Zbl

[5] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[6] A. S. Losev, A. V. Marshakov, N. A. Nekrasov, “Small instantons, little strings and free fermions”, From Fields to Strings: Circumnavigating Theoretical Physics, v. 1, Ian Kogan Memorial Collection, eds. M. Shifman, A. Vainshtein, J. F. Wheater, World Sci., Singapore, 2005, 581–621, arXiv: hep-th/0302191 | MR | Zbl

[7] N. A. Nekrasov, A. Okounkov, “Seiberg–Witten theory and random partitions”, The Unity of Mathematics: In Honor of the Ninetieth Birthday of I. M. Gelfand, Progress in Mathematics, 244, eds. P. Etingof, V. Retakh, I. M. Singer, Birkäuser, Boston, MA, arXiv: hep-th/0306238 | DOI | MR | Zbl

[8] E. Bettelheim, A. G. Abanov, P. Wiegmann, J. Phys. A: Math. Theor., 40:8 (2007), F193–F208, arXiv: nlin/0605006 | DOI | MR | Zbl

[9] L. F. Alday, D. Gaiotto, Y. Tachikawa, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl

[10] N. A. Nekrasov, Adv. Theor. Math. Phys., 7:5 (2003), 831–864, arXiv: ; N. A. Nekrasov, V. Pestun, Seiberg–Witten geometry of four dimensional $N=2$ quiver gauge theories, arXiv: hep-th/02061611211.2240 | DOI | MR | Zbl

[11] N. Seiberg, E. Witten, Nucl. Phys. B, 426:1 (1994), 19–52, arXiv: hep-th/9407087 | DOI | MR | Zbl

[12] P. Gavrylenko, A. Marshakov, JHEP, 02 (2016), 181, 32 pp., arXiv: 1507.08794 | DOI | MR

[13] Al. B. Zamolodchikov, Nucl. Phys. B, 285:3 (1987), 481–503 ; Ал. Б. Замолодчиков, ЖЭТФ, 90:5 (1986), 1808–1818; С. А. Апикян, Ал. Б. Замолодчиков, ЖЭТФ, 92:1 (1987), 34–45 | DOI | MR | MR

[14] I. M. Krichever, Commun. Pure Appl. Math., 47:4 (1994), 437–475, arXiv: hep-th/9205110 | DOI | MR | Zbl

[15] A. Marshakov, JHEP, 07 (2013), 068, 24 pp., arXiv: 1303.0753 | DOI | MR

[16] P. Gavrylenko, A. Marshakov, JHEP, 05 (2014), 097, 33 pp., arXiv: 1312.6382 | DOI

[17] O. Gamayun, N. Iorgov, O. Lisovyy, JHEP, 10 (2012), 038, 24 pp., arXiv: 1207.0787 | DOI | MR

[18] P. Gavrylenko, JHEP, 09 (2015), 167, 24 pp., arXiv: 1505.00259 | DOI | MR

[19] T. Miwa, M. Jimbo, E. Date, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge Univ. Press, Cambridge, 2000 ; V. G. Kac, J. W. van de Leur, J. Math. Phys., 44:8 (2003), 3245–3293, arXiv: hep-th/9308137 | MR | Zbl | DOI | MR | Zbl

[20] M. Sato, T. Miwa, M. Jimbo, Publ. Res. Inst. Math. Sci., 14:1 (1978), 223–267 ; 15:1 (1979), 201–278 ; 15:2, 577–629 ; 15:3, 871–972 ; 16:2 (1980), 531–584 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[21] N. Kitanine, K. K. Kozlowski, J.-M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 2011:12 (2011), P12010, 27 pp., arXiv: 1110.0803 | DOI

[22] K. K. Kozlowski, J.-M. Maillet, Microscopic approach to a class of 1D quantum critical models, arXiv: 1501.07711 | MR

[23] A. K. Pogrebkov, UMN, 58:5(353) (2003), 163–196 | DOI | DOI | MR | Zbl

[24] A. Okounkov, R. Pandharipande, Ann. of Math. (2), 163:2 (2006), 517–560, arXiv: ; The equivariant Gromov–Witten theory of $\mathbb{P}^1$, arXiv: math.AG/0204305math.AG/0207233 | DOI | MR | Zbl | MR

[25] A. V. Marshakov, TMF, 154:3 (2008), 424–450, arXiv: 0706.2857 | DOI | DOI | MR | Zbl

[26] A. Marshakov, N. A. Nekrasov, JHEP, 01 (2007), 104, 39 pp., arXiv: hep-th/0612019 | DOI | MR

[27] V. A. Fateev, A. V. Litvinov, JHEP, 01 (2012), 051, 39 pp., arXiv: 1109.4042 | DOI | MR

[28] N. Iorgov, O. Lisovyy, J. Teschner, Commun. Math. Phys., 336:2 (2015), 671–694, arXiv: 1401.6104 | DOI | MR | Zbl

[29] A. Alexandrov, A. Zabrodin, J. Geom. Phys., 67 (2013), 37–80, arXiv: 1212.6049 | DOI | MR | Zbl