Weyl correspondence for a~charged particle in the~field of a~magnetic monopole
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 383-398
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a generalized Weyl correspondence for an electrically charged particle in the field of the Dirac magnetic monopole. Our starting points are a global Lagrangian description of this system as a constrained system with $U(1)$ gauge symmetry given in terms of the fiber bundle theory and a reduction of the presymplectic structure arising on the constraint surface. In contrast to the recently proposed quantization scheme based on using a quaternionic Hilbert module, the quantum operators corresponding to classical observables in our construction act in the complex Hilbert space of $U(1)$-equivariant functions introduced by Greub and Petry. These functions are defined on the total space of a fiber bundle that is topologically equivalent to the Hopf fibration.
Keywords:
Weyl correspondence, star product, magnetic monopole, Hopf fibration, gauge symmetry, presymplectic reduction.
Mots-clés : charge quantization
Mots-clés : charge quantization
@article{TMF_2016_187_2_a11,
author = {M. A. Soloviev},
title = {Weyl correspondence for a~charged particle in the~field of a~magnetic monopole},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {383--398},
publisher = {mathdoc},
volume = {187},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a11/}
}
TY - JOUR AU - M. A. Soloviev TI - Weyl correspondence for a~charged particle in the~field of a~magnetic monopole JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 383 EP - 398 VL - 187 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a11/ LA - ru ID - TMF_2016_187_2_a11 ER -
M. A. Soloviev. Weyl correspondence for a~charged particle in the~field of a~magnetic monopole. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 383-398. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a11/