Weyl correspondence for a charged particle in the field of a magnetic monopole
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 383-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a generalized Weyl correspondence for an electrically charged particle in the field of the Dirac magnetic monopole. Our starting points are a global Lagrangian description of this system as a constrained system with $U(1)$ gauge symmetry given in terms of the fiber bundle theory and a reduction of the presymplectic structure arising on the constraint surface. In contrast to the recently proposed quantization scheme based on using a quaternionic Hilbert module, the quantum operators corresponding to classical observables in our construction act in the complex Hilbert space of $U(1)$-equivariant functions introduced by Greub and Petry. These functions are defined on the total space of a fiber bundle that is topologically equivalent to the Hopf fibration.
Keywords: Weyl correspondence, star product, magnetic monopole, Hopf fibration, gauge symmetry, presymplectic reduction.
Mots-clés : charge quantization
@article{TMF_2016_187_2_a11,
     author = {M. A. Soloviev},
     title = {Weyl correspondence for a~charged particle in the~field of a~magnetic monopole},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {383--398},
     year = {2016},
     volume = {187},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a11/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Weyl correspondence for a charged particle in the field of a magnetic monopole
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 383
EP  - 398
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a11/
LA  - ru
ID  - TMF_2016_187_2_a11
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Weyl correspondence for a charged particle in the field of a magnetic monopole
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 383-398
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a11/
%G ru
%F TMF_2016_187_2_a11
M. A. Soloviev. Weyl correspondence for a charged particle in the field of a magnetic monopole. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 383-398. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a11/

[1] P. A. M. Dirac, Proc. R. Soc. London Ser. A, 133:821 (1931), 60–72 | DOI | Zbl

[2] P. A. M. Dirac, Phys. Rev. (2), 74:7 (1948), 817–830 | DOI | MR | Zbl

[3] I. V. Tyutin, Rasseyanie elektrona na solenoide, Preprint FIAN # 27, FIAN, M., 1974, arXiv: 0801.2167

[4] T. T. Wu, C. N. Yang, Phys. Rev. D, 12:12 (1975), 3845–3857 | DOI | MR

[5] T. T. Wu, C. N. Yang, Nucl. Phys. B, 107:3 (1976), 365–380 | DOI | MR

[6] W. Greub, H. R. Petry, J. Math. Phys., 16:6 (1975), 1347–1351 | DOI | MR

[7] H. Hopf, Math. Ann., 104:1 (1931), 637–665 | DOI | MR | Zbl

[8] H. K. Urbantke, J. Geom. Phys., 46:2 (2003), 125–150 | DOI | MR | Zbl

[9] B. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya: metody i prilozheniya, Nauka, M., 1986 | MR

[10] M. Daniel, S. M. Vialle, UFN, 136:3 (1982), 377–419 | DOI

[11] K. A. Milton, Rep. Progr. Phys., 69:6 (2006), 1637–1711, arXiv: hep-ex/0602040 | DOI | MR

[12] J. F. Carinena, J. M. Gracia–Bondia, F. Lizzi, G. Marmo, P. Vitale, Phys. Lett. A, 374:35 (2010), 3614–3618, arXiv: 0912.2197 | DOI | MR | Zbl

[13] G. G. Emch, A. Z. Jadczyk, On quaternions and monopoles, arXiv: quant-ph/9803002 | MR

[14] A. P. Balachandran, G. Marmo, B. S. Skagerstam, A. Stern, Nucl. Phys. B, 162:3 (1980), 385–396 | DOI | MR

[15] M. A. Solovev, Pisma v ZhETF, 39:12 (1984), 582–584

[16] J. E. Marsden, T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17, Springer, New York, 1999 | DOI | MR | Zbl

[17] P. Kustaanheimo, E. Stiefel, J. Reine Angew. Math., 218 (1965), 204–219 | DOI | MR | Zbl

[18] S. Bates, A. Weinstein, Lectures on the Geometry of Quatization, Berkeley Mathematics Lecture Notes, 8, AMS, Providence, RI, 1997 | MR | Zbl

[19] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[20] H.-R. Petry, “Electron scattering on magnetic monopoles”, Differential Geometrical Methods in Mathematical Physics, Lecture Notes in Mathematics, 836, Berlin, Springer, 1980, 406–419 | DOI | MR

[21] M. A. Solovev, TMF, 181:3, 568–596 | DOI | DOI | MR

[22] J. M. Gracia-Bondía, J. C. Várilly, J. Math. Phys., 29:4 (1988), 869–879 | DOI | MR | Zbl

[23] V. Gayral, J. M. Gracia-Bondía, B. Iochum, T. Schücker, J. C. Várilly, Commun. Math. Phys., 246:3 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl

[24] A. Trautman, Internat. J. Theoret. Phys., 16:78 (1977), 561–565 | DOI

[25] M. A. Solovev, Pisma v ZhETF, 35:12 (1982), 540–542