Eigenfunction expansions for the~Schr\"odinger equation with an~inverse-square potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 360-382

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-dimensional Schrödinger equation $-f''+q_\kappa f=Ef$ on the positive half-axis with the potential $q_\kappa(r)=(\kappa^2-1/4) r^{-2}$. For each complex number $\vartheta$, we construct a solution $u^\kappa_\vartheta(E)$ of this equation that is analytic in $\kappa$ in a complex neighborhood of the interval $(-1,1)$ and, in particular, at the “singular” point $\kappa=0$. For $-1\kappa1$ and real $\vartheta$, the solutions $u^\kappa_\vartheta(E)$ determine a unitary eigenfunction expansion operator $U_{\kappa,\vartheta}\colon L_2(0,\infty)\to L_2(\mathbb R,\mathcal V_{\kappa,\vartheta})$, where $\mathcal V_{\kappa,\vartheta}$ is a positive measure on $\mathbb R$. We show that every self-adjoint realization of the formal differential expression $-\partial^2_r+ q_\kappa(r)$ for the Hamiltonian is diagonalized by the operator $U_{\kappa,\vartheta}$ for some $\vartheta\in\mathbb R$. Using suitable singular Titchmarsh–Weyl $m$-functions, we explicitly find the measures $\mathcal V_{\kappa,\vartheta}$ and prove their continuity in $\kappa$ and $\vartheta$.
Keywords: Schrödinger equation, inverse-square potential, self-adjoint extension, eigenfunction expansion, Titchmarsh–Weyl $m$-function.
@article{TMF_2016_187_2_a10,
     author = {A. G. Smirnov},
     title = {Eigenfunction expansions for {the~Schr\"odinger} equation with an~inverse-square potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {360--382},
     publisher = {mathdoc},
     volume = {187},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/}
}
TY  - JOUR
AU  - A. G. Smirnov
TI  - Eigenfunction expansions for the~Schr\"odinger equation with an~inverse-square potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 360
EP  - 382
VL  - 187
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/
LA  - ru
ID  - TMF_2016_187_2_a10
ER  - 
%0 Journal Article
%A A. G. Smirnov
%T Eigenfunction expansions for the~Schr\"odinger equation with an~inverse-square potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 360-382
%V 187
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/
%G ru
%F TMF_2016_187_2_a10
A. G. Smirnov. Eigenfunction expansions for the~Schr\"odinger equation with an~inverse-square potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 360-382. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/