Eigenfunction expansions for the~Schr\"odinger equation with an~inverse-square potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 360-382
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the one-dimensional Schrödinger equation $-f''+q_\kappa f=Ef$ on the positive half-axis with the potential $q_\kappa(r)=(\kappa^2-1/4) r^{-2}$. For each complex number $\vartheta$, we construct a solution $u^\kappa_\vartheta(E)$ of this equation that is analytic in $\kappa$ in a complex neighborhood of the interval $(-1,1)$ and, in particular, at the “singular” point $\kappa=0$. For $-1\kappa1$ and real $\vartheta$, the solutions $u^\kappa_\vartheta(E)$ determine a unitary eigenfunction expansion operator $U_{\kappa,\vartheta}\colon L_2(0,\infty)\to L_2(\mathbb R,\mathcal V_{\kappa,\vartheta})$, where $\mathcal V_{\kappa,\vartheta}$ is a positive measure on $\mathbb R$. We show that every self-adjoint realization of the formal differential expression $-\partial^2_r+ q_\kappa(r)$ for the Hamiltonian is diagonalized by the operator $U_{\kappa,\vartheta}$ for some $\vartheta\in\mathbb R$. Using suitable singular Titchmarsh–Weyl $m$-functions, we explicitly find the measures $\mathcal V_{\kappa,\vartheta}$ and prove their continuity in $\kappa$ and $\vartheta$.
Keywords:
Schrödinger equation, inverse-square potential, self-adjoint extension,
eigenfunction expansion, Titchmarsh–Weyl $m$-function.
@article{TMF_2016_187_2_a10,
author = {A. G. Smirnov},
title = {Eigenfunction expansions for {the~Schr\"odinger} equation with an~inverse-square potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {360--382},
publisher = {mathdoc},
volume = {187},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/}
}
TY - JOUR AU - A. G. Smirnov TI - Eigenfunction expansions for the~Schr\"odinger equation with an~inverse-square potential JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 360 EP - 382 VL - 187 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/ LA - ru ID - TMF_2016_187_2_a10 ER -
A. G. Smirnov. Eigenfunction expansions for the~Schr\"odinger equation with an~inverse-square potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 360-382. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/