Eigenfunction expansions for the Schrödinger equation with an inverse-square potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 360-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the one-dimensional Schrödinger equation $-f''+q_\kappa f=Ef$ on the positive half-axis with the potential $q_\kappa(r)=(\kappa^2-1/4) r^{-2}$. For each complex number $\vartheta$, we construct a solution $u^\kappa_\vartheta(E)$ of this equation that is analytic in $\kappa$ in a complex neighborhood of the interval $(-1,1)$ and, in particular, at the “singular” point $\kappa=0$. For $-1<\kappa<1$ and real $\vartheta$, the solutions $u^\kappa_\vartheta(E)$ determine a unitary eigenfunction expansion operator $U_{\kappa,\vartheta}\colon L_2(0,\infty)\to L_2(\mathbb R,\mathcal V_{\kappa,\vartheta})$, where $\mathcal V_{\kappa,\vartheta}$ is a positive measure on $\mathbb R$. We show that every self-adjoint realization of the formal differential expression $-\partial^2_r+ q_\kappa(r)$ for the Hamiltonian is diagonalized by the operator $U_{\kappa,\vartheta}$ for some $\vartheta\in\mathbb R$. Using suitable singular Titchmarsh–Weyl $m$-functions, we explicitly find the measures $\mathcal V_{\kappa,\vartheta}$ and prove their continuity in $\kappa$ and $\vartheta$.
Keywords: Schrödinger equation, inverse-square potential, self-adjoint extension, eigenfunction expansion, Titchmarsh–Weyl $m$-function.
@article{TMF_2016_187_2_a10,
     author = {A. G. Smirnov},
     title = {Eigenfunction expansions for {the~Schr\"odinger} equation with an~inverse-square potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {360--382},
     year = {2016},
     volume = {187},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/}
}
TY  - JOUR
AU  - A. G. Smirnov
TI  - Eigenfunction expansions for the Schrödinger equation with an inverse-square potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 360
EP  - 382
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/
LA  - ru
ID  - TMF_2016_187_2_a10
ER  - 
%0 Journal Article
%A A. G. Smirnov
%T Eigenfunction expansions for the Schrödinger equation with an inverse-square potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 360-382
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/
%G ru
%F TMF_2016_187_2_a10
A. G. Smirnov. Eigenfunction expansions for the Schrödinger equation with an inverse-square potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 360-382. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a10/

[1] H. Hankel, Math. Ann., 8:4 (1875), 471–494 | DOI

[2] H. Weyl, Math. Ann., 68:2 (1910), 220–269 | DOI | MR | Zbl

[3] H. Weyl, Gött. Nachr., 1910 (1910), 442–467 | Zbl

[4] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I, Clarendon Press, Oxford, 1962 | MR | Zbl

[5] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | MR | Zbl

[6] F. Gesztesy, M. Zinchenko, Math. Nachr., 279:9–10 (2006), 1041–1082, arXiv: math/0505120 | DOI | MR | Zbl

[7] C. Fulton, Math. Nachr., 281:10 (2008), 1418–1475 | DOI | MR | Zbl

[8] A. Kostenko, A. Sakhnovich, G. Teschl, Internat. Math. Res. Notices, 2012:8 (2012), 1699–1747, arXiv: 1007.0136 | DOI | MR | Zbl

[9] D. M. Gitman, I. V. Tyutin, B. L. Voronov, J. Phys. A: Math. Theor., 43:14 (2010), 145205, 34 pp., arXiv: 0903.5277 | DOI | MR | Zbl

[10] A. G. Smirnov, J. Math. Phys., 56:12 (2015), 122101, 50 pp., arXiv: 1411.5351 | DOI | MR | Zbl

[11] W. N. Everitt, H. Kalf, J. Comput. Appl. Math., 208:1 (2007), 3–19 | DOI | MR | Zbl

[12] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. I, II, McGraw-Hill, New York–Toronto–London, 1953 | MR

[13] K. Kodaira, Amer. J. Math., 71:4 (1949), 921–945 | DOI | MR | Zbl

[14] G. Teschl, Mathematical Methods in Quantum Mechanics, Graduate Studies in Mathematics, 99, AMS, Providence, RI, 2009 | DOI | MR | Zbl

[15] J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, 1258, Springer, Berlin, 1987 | DOI | MR | Zbl

[16] C. Bennewitz, W. N. Everitt, “The Titchmarsh–Weyl eigenfunction expansion theorem for Sturm–Liouville differential equations”, Sturm–Liouville Theory (Geneva, Italy, September 15–19, 2003), eds. W. O. Amrein, A. M. Hinz, D. B. Pearson, Birkhäuser, Basel, 2005, 137–171 | DOI | MR | Zbl