Peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 213-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus and discuss the long history of an incorrect interpretation of this problem in the case of a pointlike nucleus and its current correct solution. We consider the spectral problem in the case of a regularized Coulomb potential. For some special regularizations, we derive an exact equation for the point spectrum in the energy interval $(-m,m)$ and find some of its solutions numerically. We also derive an exact equation for charges yielding bound states with the energy $E=-m$; some call them supercritical charges. We show the existence of an infinite number of such charges. Their existence does not mean that the one-particle relativistic quantum mechanics based on the Dirac Hamiltonian with the Coulomb field of such charges is mathematically inconsistent, although it is physically unacceptable because the spectrum of the Hamiltonian is unbounded from below. The question of constructing a consistent nonperturbative second-quantized theory remains open, and the consequences of the existence of supercritical charges from the standpoint of the possibility of constructing such a theory also remain unclear.
Mots-clés : Dirac equation
Keywords: supercritical Coulomb field, spectral problem, electron–positron pair creation.
@article{TMF_2016_187_2_a1,
     author = {B. L. Voronov and D. M. Gitman and A. D. Levin and R. Ferreira},
     title = {Peculiarities of the~electron energy spectrum in {the~Coulomb} field of a~superheavy nucleus},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--231},
     year = {2016},
     volume = {187},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a1/}
}
TY  - JOUR
AU  - B. L. Voronov
AU  - D. M. Gitman
AU  - A. D. Levin
AU  - R. Ferreira
TI  - Peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 213
EP  - 231
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a1/
LA  - ru
ID  - TMF_2016_187_2_a1
ER  - 
%0 Journal Article
%A B. L. Voronov
%A D. M. Gitman
%A A. D. Levin
%A R. Ferreira
%T Peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 213-231
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a1/
%G ru
%F TMF_2016_187_2_a1
B. L. Voronov; D. M. Gitman; A. D. Levin; R. Ferreira. Peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 213-231. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a1/

[1] D. M. Gitman, J. Phys. A: Math. Gen., 10:11 (1977), 2007–2020 ; E. S. Fradkin, D. M. Gitman, Fortschr. Phys., 29:9 (1981), 381–411 ; Д. М. Гитман, Е. С. Фрадкин, Ш. М. Шварцман, Квантовая электродинамика с нестабильным вакуумом, Наука, М., 1991 | DOI | DOI | MR | MR

[2] S. P. Gavrilov, D. M. Gitman, Quantization of charged fields in the presence of critical potential steps, arXiv: 1506.01156 | MR

[3] H. A. Bethe, E. E. Salpeter, “Quantum mechanics of one- and two-electron systems”, Atoms I, Handbuch der Physik/Encyclopedia of Physics, 7/35, Springer, Berlin, 1957, 88–436 | DOI | MR | Zbl

[4] P. A. M. Dirac, Proc. Roy. Soc. London Ser. A, 117:778 (1928), 610–624 | DOI | Zbl

[5] M. E. Rose, Relativistic Electron Theory, Wiley, New York, 1961 | Zbl

[6] A. I. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, Nauka, M., 1969 | MR | Zbl

[7] W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin, 1985

[8] B. L. Voronov, D. M. Gitman, I. V. Tyutin, TMF, 150:1 (2007), 41–84 | DOI | DOI | MR | Zbl

[9] D. M. Gitman, I. V. Tyutin, B. L. Voronov, Self-adjoint Extensions in Quantum Mechanics. General Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials, Progress in Mathematical Physics, 62, Birkhäuser, Boston, MA, 2012 | DOI | MR | Zbl

[10] D. M. Gitman, A. D. Levin, I. V. Tyutin, B. L. Voronov, Phys. Scr., 87:3 (2013), 038104, 7 pp. | DOI | Zbl

[11] K. M. Case, Phys. Rev. (2), 80:5 (1950), 797–806 | DOI | MR | Zbl

[12] I. Pomeranchuk, Ya. Smorodinsky, J. Phys. (USSR), IX:2 (1945), 97–100

[13] Ya. B. Zeldovich, V. S. Popov, UFN, 105:3 (1971), 403–440 | DOI | DOI

[14] V. S. Popov, YaF, 12:2 (1970), 429; 14:2 (1971), 458; ЖЭТФ, 60:4 (1971), 1228–1244

[15] V. M. Kuleshov, V. D. Mur, N. B. Narozhnyi, A. M. Fedotov, Yu. E. Lozovik, V. S. Popov, UFN, 185:8, 845–852 | DOI | DOI | MR

[16] K. S. Krane, Introductory Nuclear Physics, John Wiley and Sons, New York, 1988

[17] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR | MR | Zbl

[18] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya, funktsii Lezhandra, Nauka, M., 1973 | MR

[19] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | Zbl

[20] V. S. Popov, Pisma v ZhETF, 11:5 (1970), 254–256

[21] I. A. Maltsev, V. M. Shabaev, I. I. Tupitsyn, A. I. Bondarev, Y. S. Kozhedub, G. Plunien, Th. Stöhlker, Phys. Rev. A, 91:3 (2015), 032708, 7 pp., arXiv: 1412.5337 | DOI