Conversion of second-class constraints and resolving the zero-curvature conditions in the geometric quantization theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 200-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the approach to geometric quantization based on the conversion of second-class constraints, we resolve the corresponding nonlinear zero-curvature conditions for the extended symplectic potential. From the zero-curvature conditions, we deduce new linear equations for the extended symplectic potential. We show that solutions of the new linear equations also satisfy the zero-curvature condition. We present a functional solution of these new linear equations and obtain the corresponding path integral representation. We investigate the general case of a phase superspace where boson and fermion coordinates are present on an equal basis.
Keywords: symplectic potential, second-class constraint, conversion method.
@article{TMF_2016_187_2_a0,
     author = {I. A. Batalin and P. M. Lavrov},
     title = {Conversion of second-class constraints and resolving the~zero-curvature conditions in the~geometric quantization theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {200--212},
     year = {2016},
     volume = {187},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a0/}
}
TY  - JOUR
AU  - I. A. Batalin
AU  - P. M. Lavrov
TI  - Conversion of second-class constraints and resolving the zero-curvature conditions in the geometric quantization theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 200
EP  - 212
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a0/
LA  - ru
ID  - TMF_2016_187_2_a0
ER  - 
%0 Journal Article
%A I. A. Batalin
%A P. M. Lavrov
%T Conversion of second-class constraints and resolving the zero-curvature conditions in the geometric quantization theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 200-212
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a0/
%G ru
%F TMF_2016_187_2_a0
I. A. Batalin; P. M. Lavrov. Conversion of second-class constraints and resolving the zero-curvature conditions in the geometric quantization theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 2, pp. 200-212. http://geodesic.mathdoc.fr/item/TMF_2016_187_2_a0/

[1] F. A. Berezin, Commun. Math. Phys., 40:2 (1975), 153–174 | DOI | MR | Zbl

[2] D. J. Simms, N. M. J. Woodhouse, Lectures on Geometric Quantization, Lecture Notes in Physics, 53, Springer, Berlin, 1976 | DOI | MR | Zbl

[3] N. M. J. Woodhouse, Rep. Math. Phys., 12:1 (1977), 45–56 | DOI | MR

[4] M. Forger, H. Hess, Commun. Math. Phys., 64:3 (1979), 269–278 | DOI | MR | Zbl

[5] N. M. J. Woodhouse, Geometric Quantization, Oxford Univ. Press, New York, 1992 | MR | Zbl

[6] E. S. Fradkin, G. A. Vilkovisky, Phys. Lett. B, 55:2 (1975), 224–226 | DOI | MR | Zbl

[7] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 69:3 (1977), 309–312 | DOI | MR

[8] B. V. Fedosov, Deformation Quantization and Index Theory, Mathematical Topics, 9, Akademie, Berlin, 1996 | MR | Zbl

[9] M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky, Internat. J. Modern Phys. A, 12:7 (1997), 1405–1429, arXiv: hep-th/9502010 | DOI | MR | Zbl

[10] A. S. Cattaneo, G. Felder, Commun. Math. Phys., 212:3 (2000), 591–611, arXiv: math/9902090 | DOI | MR | Zbl

[11] I. A. Batalin, E. S. Fradkin, Phys. Lett. B, 180:1–2 (1986), 157–164 | DOI | MR

[12] I. A. Batalin, E. S. Fradkin, Nucl. Phys. B, 279:3 (1987), 514–528 | DOI | MR

[13] I. A. Batalin, E. S. Fradkin, T. E. Fradkina, Nucl. Phys. B, 314:1 (1989), 158–174 | DOI | MR

[14] I. A. Batalin, E. S. Fradkin, Nucl. Phys. B, 326:3 (1989), 701–718 | DOI | MR

[15] I. A. Batalin, E. S. Fradkin, T. E. Fradkina, Nucl. Phys. B, 332:3 (1990), 723–736 | DOI | MR

[16] E. S. Fradkin, V. Ya. Linetsky, Nucl. Phys. B, 444:3 (1995), 577–601 | DOI | MR | Zbl

[17] E. S. Fradkin, V. Ya. Linetsky, Nucl. Phys. B, 431:3 (1994), 569–621 | DOI | MR | Zbl

[18] M. A. Grigoriev, S. L. Lyakhovich, Commun. Math. Phys., 218:2 (2001), 437–457, arXiv: hep-th/0003114 | DOI | MR | Zbl

[19] I. A. Batalin, M. A. Grigorev, S. L. Lyakhovich, TMF, 128:3 (2001), 324–360 | DOI | DOI | MR | Zbl

[20] I. Batalin, M. Grigoriev, S. Lyakhovich, J. Math. Phys., 46:7 (2005), 072301, 16 pp. | DOI | MR | Zbl

[21] I. A. Batalin, E. S. Fradkin, Modern Phys. Lett. A, 4:11 (1989), 1001–1011 | DOI | MR | Zbl

[22] I. A. Batalin, I. V. Tyutin, Internat. J. Modern Phys. A, 6:18 (1991), 3255–3282 | DOI | MR | Zbl

[23] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | MR | Zbl