High-frequency spectral distribution of the equilibrium radiation energy in a plasma
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 104-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish that the difference of the spectral distribution of the equilibrium radiation energy in matter from the Planck formula in the high-frequency range is determined by the imaginary part of the transverse dielectric permittivity of the matter. Based on this, we show that in a rarified high-temperature fully ionized nonrelativistic plasma, the high-frequency spectral distribution of the equilibrium radiation energy differs essentially from the Planck formula because of the power-law character of the decrease in the frequency, which is due to the presence of matter.
Keywords: equilibrium radiation, spectral energy distribution, fully ionized plasma.
@article{TMF_2016_187_1_a7,
     author = {V. B. Bobrov and S. A. Triger},
     title = {High-frequency spectral distribution of the~equilibrium radiation energy in a~plasma},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {104--113},
     year = {2016},
     volume = {187},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a7/}
}
TY  - JOUR
AU  - V. B. Bobrov
AU  - S. A. Triger
TI  - High-frequency spectral distribution of the equilibrium radiation energy in a plasma
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 104
EP  - 113
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a7/
LA  - ru
ID  - TMF_2016_187_1_a7
ER  - 
%0 Journal Article
%A V. B. Bobrov
%A S. A. Triger
%T High-frequency spectral distribution of the equilibrium radiation energy in a plasma
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 104-113
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a7/
%G ru
%F TMF_2016_187_1_a7
V. B. Bobrov; S. A. Triger. High-frequency spectral distribution of the equilibrium radiation energy in a plasma. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 104-113. http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a7/

[1] M. Planck, Ann. Phys., 309:3 (1901), 553–563 | DOI

[2] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 5, Statisticheskaya fizika. Chast 1, Nauka, M., 1976 | MR

[3] M. L. Levin, S. M. Rytov, Teoriya ravnovesnykh teplovykh fluktuatsii v elektrodinamike, Nauka, M., 1967

[4] A. I. Volokitin, B. N. Dzh. Persson, UFN, 177:9 (2007), 921–951 | DOI | DOI

[5] E. A. Vinogradov, I. A. Dorofeev, UFN, 179:5 (2009), 449–485 | DOI | DOI

[6] V. B. Bobrov, J. Phys.: Cond. Matt., 2:31 (1990), 6695–6698 | DOI

[7] V. B. Bobrov, TMF, 88:1 (1991), 141–145 | DOI

[8] S. A. Trigger, Phys. Lett. A, 370:5–6 (2007), 365–369, arXiv: cond-mat/0703572 | DOI | Zbl

[9] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[10] V. M. Agranovich, V. L. Ginzburg, Elektrodinamika s uchetom prostranstvennoi dispersii i teoriya eksitonov, Nauka, M., 1964

[11] D. A. Kirzhnits, UFN, 152:3 (1987), 399–422 | DOI | DOI

[12] Yu. S. Barash, V. L. Ginzburg, UFN, 116:1 (1975), 5–40 | DOI | DOI

[13] E. S. Fradkin, Tr. FIAN, 29 (1965), 7–138 | Zbl

[14] A. I. Akhiezer, S. V. Peletminskii, Metody statisticheskoi fiziki, Nauka, M., 1977 | MR

[15] V. B. Bobrov, I. M. Sokolov, S. A. Triger, Pisma v ZhETF, 101:5 (2015), 326–329 | DOI | DOI

[16] V. P. Silin, A. A. Rukhadze, Elektromagnitnye svoistva plazmy i plazmopodobnykh sred, Librokom, M., 2013

[17] V. B. Bobrov, Physica A, 187:3–4 (1992), 603–624 | DOI | MR

[18] M. V. Kuzelev, A. A. Rukhadze, UFN, 169:6 (1999), 687–689 | DOI | DOI

[19] D. A. Kirzhnits, Pisma v ZhETF, 46:6 (1987), 244–246

[20] V.-D. Kreft, D. Kremp, V. Ebeling, G. Rëpke, Kvantovaya statistika sistem zaryazhennykh chastits, Mir, M., 1988

[21] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | MR | Zbl | Zbl