Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 74-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an eigenvalue problem for the two-dimensional Hartree operator with a small parameter at the nonlinearity. We obtain the asymptotic eigenvalues and the asymptotic eigenfunctions near the upper boundaries of the spectral clusters formed near the energy levels of the unperturbed operator and construct an asymptotic expansion around the circle where the solution is localized.
Keywords: self-consistent field, spectral cluster, asymptotic eigenvalue, asymptotic eigenfunction, logarithmic singularity.
@article{TMF_2016_187_1_a5,
     author = {A. V. Pereskokov},
     title = {Semiclassical asymptotic approximation of the~two-dimensional {Hartree} operator spectrum near the~upper boundaries of spectral clusters},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--87},
     year = {2016},
     volume = {187},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a5/}
}
TY  - JOUR
AU  - A. V. Pereskokov
TI  - Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 74
EP  - 87
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a5/
LA  - ru
ID  - TMF_2016_187_1_a5
ER  - 
%0 Journal Article
%A A. V. Pereskokov
%T Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 74-87
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a5/
%G ru
%F TMF_2016_187_1_a5
A. V. Pereskokov. Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 74-87. http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a5/

[1] N. N. Bogolyubov, Ukr. matem. zhurn., 2:2 (1950), 3–24 | MR | Zbl

[2] C. I. Pekar, Issledovaniya po elektronnoi teorii kristallov, Gostekhizdat, M., 1951

[3] L. P. Pitaevskii, UFN, 168:6 (1998), 641–653 | DOI | DOI

[4] D. R. Khartri, Raschety atomnykh struktur, IL, M., 1960 | MR | Zbl

[5] S. A. Achmanov, R. V. Hocklov, A. P. Suchorukov, “Self-defocusing and self-modulation in nonlinear media”, Laserhandbuch, 2, North-Holland, Amsterdam, 1972, 5–108

[6] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Naukova dumka, Kiev, 1984 | MR | Zbl

[7] M. V. Karasev, V. P. Maslov, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 13 (1979), 145–267 | DOI | MR | Zbl

[8] S. I. Chernykh, TMF, 52:3 (1982), 491–494 | DOI | MR

[9] I. V. Simenog, TMF, 30:3 (1977), 408–414 | MR

[10] M. V. Karasev, Kvantovaya reduktsiya na orbity algebr simmetrii i zadacha Erenfesta, Preprint ITF-87-157R, ITF AN USSR, Kiev, 1987

[11] S. A. Vakulenko, V. P. Maslov, I. A. Molotkov, I. A. Shafarevich, Dokl. RAN, 345:6 (1995), 743–745 | MR | Zbl

[12] M. V. Karasev, A. V. Pereskokov, Izv. RAN. Ser. matem., 65:5 (2001), 33–72 | DOI | DOI | MR | Zbl

[13] M. V. Karasev, A. V. Pereskokov, Izv. RAN. Ser. matem., 65:6 (2001), 57–98 | DOI | DOI | MR | Zbl

[14] A. V. Pereskokov, TMF, 131:3 (2002), 389–406 | DOI | DOI | MR | Zbl

[15] V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, TMF, 150:1 (2007), 26–40 | DOI | DOI | MR | Zbl

[16] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972 | MR

[17] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | MR | Zbl | Zbl

[18] A. V. Pereskokov, TMF, 183:1 (2015), 78–89 | DOI | DOI | MR | Zbl

[19] A. V. Pereskokov, TMF, 178:1 (2014), 88–106 | DOI | DOI | MR | Zbl

[20] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | MR | Zbl

[21] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 1, Mir, M., 1974 | Zbl

[22] A. F. Nikiforov, V. B. Uvarov, Osnovy teorii spetsialnykh funktsii, Nauka, M., 1974 | MR

[23] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[24] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | Zbl

[25] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl

[26] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | MR | Zbl