“Quantization" of an isomonodromic Hamiltonian Garnier system with two degrees of freedom
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 39-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct solutions of analogues of a time-dependent Schrödinger equation corresponding to an isomonodromic polynomial Hamiltonian of a Garnier system with two degrees of freedom. The solutions are determined by solutions of linear differential equations whose compatibility condition is the given Garnier system. With explicit substitutions, these solutions reduce to solutions of the Belavin–Polyakov–Zamolodchikov equations with four times and two spatial variables.
Keywords: Schrödinger equation, Hamiltonian, Belavin–Polyakov–Zamolodchikov equation
Mots-clés : isomonodromic deformation, Garnier system, Painlevé equation.
@article{TMF_2016_187_1_a3,
     author = {D. P. Novikov and B. I. Suleimanov},
     title = {{\textquotedblleft}Quantization" of an~isomonodromic {Hamiltonian} {Garnier} system with two degrees of freedom},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {39--57},
     year = {2016},
     volume = {187},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a3/}
}
TY  - JOUR
AU  - D. P. Novikov
AU  - B. I. Suleimanov
TI  - “Quantization" of an isomonodromic Hamiltonian Garnier system with two degrees of freedom
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 39
EP  - 57
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a3/
LA  - ru
ID  - TMF_2016_187_1_a3
ER  - 
%0 Journal Article
%A D. P. Novikov
%A B. I. Suleimanov
%T “Quantization" of an isomonodromic Hamiltonian Garnier system with two degrees of freedom
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 39-57
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a3/
%G ru
%F TMF_2016_187_1_a3
D. P. Novikov; B. I. Suleimanov. “Quantization" of an isomonodromic Hamiltonian Garnier system with two degrees of freedom. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 39-57. http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a3/

[1] B. I. Suleimanov, “Gamiltonova struktura uravnenii Penleve i metod izomonodromnykh deformatsii”, Asimptoticheskie svoistva reshenii differentsialnykh uravnenii, ed. A. M. Ilin, In-t matem. Bashkirskogo nauchnogo tsentra UrO AN SSSR, Ufa, 1988, 93–102 ; Б. И. Сулейманов, Дифференц. уравнения, 30:5 (1994), 791–796 | MR | MR | Zbl

[2] B. I. Suleimanov, TMF, 156:3 (2008), 364–377 | DOI | DOI | MR | Zbl

[3] B. I. Culeimanov, “Kvantovanie nekotorykh avtonomnykh reduktsii uravnenii Penleve i staraya kvantovaya teoriya”, Tezisy dokladov Mezhdunarodnoi konferentsii “Differentsialnye uravneniya i smezhnye vorosy”, posvyaschennoi 110-i godovschine I. G. Petrovskogo (Moskva, 29 maya – 4 iyunya 2011\;g.), Izd-vo MGU, M., 2011, 356–357

[4] B. I. Suleimanov, Ufimsk. matem. zhurn., 4:2 (2012), 127–135 | MR

[5] B. I. Suleimanov, Funkts. analiz i ego pril., 48:3 (2014), 52–62 | DOI | MR | Zbl

[6] D. P. Novikov, TMF, 161:2 (2009), 191–203 | DOI | MR | Zbl

[7] D. P. Novikov, “A monodromy problem and some functions connected with Painleve 6”, Painleve Equations and Related Topics, Euler International Mathematical Institute, St.-Petersburg, 2011, 118–121 | MR

[8] D. P. Novikov, R. K. Romanovskii, S. G. Sadovnichuk, Nekotorye novye metody konechnozonnogo integrirovaniya solitonnykh uravnenii, Nauka, Novosibirsk, 2013

[9] A. Bloemendal, B. Virág, Probab. Theory Related Fields, 156:3–4 (2013), 795–825 | DOI | MR | Zbl

[10] A. Bloemendal, B. Virág, Limits of spiked random matrices II, arXiv: 1109.3704 | MR

[11] A. Zabrodin, A. Zotov, J. Math. Phys., 53:7 (2012), 073507, 19 pp., arXiv: 1107.5672 | DOI | MR | Zbl

[12] A. Zabrodin, A. Zotov, J. Math. Phys., 53:7 (2012), 073508, 19 pp. | DOI | MR | Zbl

[13] A. Zabrodin, A. Zotov, Constr. Approx., 41:3 (2015), 385–423 | DOI | MR | Zbl

[14] A. V. Zotov, A. V. Smirnov, TMF, 177:1 (2013), 3–67 | DOI | DOI | Zbl

[15] A. M. Levin, M. A. Olshanetskii, A. V. Zotov, UMN, 69:1(415) (2012), 39–124, arXiv: 1311.4498 | DOI | DOI | MR | Zbl

[16] A. M. Levin, M. A. Olshanetsky, A. V. Zotov, JHEP, 10 (2014), 109, 29 pp., arXiv: 1408.6246 | DOI | MR | Zbl

[17] H. Nagoya, J. Math. Phys., 52:8 (2011), 083509, 16 pp. | DOI | MR | Zbl

[18] H. Nagoya, Y. Yamada, Ann. Henri Poincaré, 15:2 (2014), 313–344 | DOI | MR | Zbl

[19] I. Rumanov, Hard edge for beta-ensembles and Painlevé III, arXiv: 1212.5333 | MR

[20] I. Rumanov, J. Math. Phys., 56:1 (2015), 013508, 16 pp., arXiv: 1306.2117 | DOI | MR | Zbl

[21] I. Rumanov, Beta ensembles, quantum Painlevé equations and isomonodromy systems, arXiv: 1408.3847 | MR

[22] I. Rumanov, Painlevé representation of Tracy–Widom$_\beta$ distribution for $\beta=6$, arXiv: 1408.3779 | MR

[23] H. Rosengren, Special polynomials related to the supersymmetric eight-vertex model. II. Schrödinger equation, arXiv: 1312.5879 | MR

[24] H. Rosengren, Commun. Math. Phys., 340:3 (2015), 1143–1170, arXiv: 1503.02833 | DOI | MR | Zbl

[25] A. Litvinov, S. Lukyanov, N. Nekrasov, A. Zamolodchikov, JHEP, 7 (2014), 144, 19 pp., arXiv: 1309.4700 | DOI | MR | Zbl

[26] A. M. Grundland, D. Riglioni, J. Phys. A: Math. Theor., 48:24 (2015), 245201, 15 pp., arXiv: 1405.0968 | DOI | MR | Zbl

[27] R. Conte, I. Dornic, C. R. Math. Acad. Sci. Paris, 352:10 (2014), 803–806 | DOI | MR | Zbl

[28] R. Garnier, Ann. Sci. École Norm. Sup. (3), 29 (1912), 1–126 | DOI | MR | Zbl

[29] A. I. Ovseevich, Dokl. RAN, 414:6 (2007), 732–735 | DOI | MR | Zbl

[30] A. I. Ovseevich, Probl. peredachi inform., 44:1 (2008), 59–79 | DOI | MR | Zbl

[31] L. Schlesinger, J. Reine Angew. Math., 141 (1912), 96–145 | MR | Zbl

[32] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Beskonechnaya konformnaya simmetriya v dvumernoi kvantovoi teorii polya”, Instantony, struny i konformnaya teoriya polya, ed. A. A. Belavin, Fizmatlit, M., 2002, 224–271 ; A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | MR | DOI | MR | Zbl

[33] A. B. Zamolodchikov, V. A. Fateev, YaF, 43:4 (1986), 1031–1044

[34] M. Sato, T. Miwa, M. Jimbo, Publ. Res. Inst. Math. Sci., 15:1 (1979), 201–278 | DOI | MR | Zbl

[35] H. Kimura, K. Okamoto, J. Math. Pures Appl. (9), 63:1 (1984), 129–146 | MR | Zbl

[36] K. Okamoto, Isomonodromic deformation and the Painlevé equations, and the Garnier system, Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, 1982 ; J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33:3 (1986), 575–618 | MR | MR | Zbl

[37] H. Kimura, Ann. Mat. Pura Appl. (4), 155:1 (1989), 25–74 | DOI | MR | Zbl

[38] H. Sakai, Isomonodromic deformation and $4$-dimensional Painlevé-type equations, Tech. Report, Univ. Tokyo, Tokyo, 2010 | Zbl

[39] H. Kawakami, A. Nakamura, H. Sakai, “Toward a classification of $4$-dimensional Painlevé-type equations”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices (Boston, MA, January 6–7, 2012), Contemporary Mathematics, 593, eds. A. Dzhamay, K. Maruno, V. U. Pierce, AMS, Providence, RI, 2013, 143–161 | DOI | MR | Zbl

[40] H. Kawakami, A. Nakamura, H. Sakai, Degeneration scheme of $4$-dimensional Painlevé-type equations, arXiv: 1209.3836

[41] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, “From Gauss to Painlevé. Modern theory of special functions”, Aspects of Mathematics, E16, Friedr. Vieweg and Sohn, Braunschweig, 1991 | DOI | MR | Zbl

[42] R. Garnier, Ann. Sci. École Norm. Sup., 43 (1926), 239–252

[43] M. V. Babich, UMN, 64:1(385) (2009), 51–134 | DOI | DOI | MR | Zbl

[44] A. V. Stoyanovsky, A relation between the Knizhnik–Zamolodchikov and Belavin–Polyakov–Zamolodchikov systems of partial differential equations, 2000, arXiv: math-ph/0012013 | MR

[45] M. Mazzocco, Int. Math. Res. Not., 12 (2002), 613–646 | DOI | MR | Zbl

[46] K. Okamoto, Proc. Japan Acad. Ser. A Math. Sci., 56:6 (1980), 264–268 | DOI | MR | Zbl

[47] G. F. Fedorov, Matem. sb., 11(53):1–2 (1942), 97–120 | MR | Zbl

[48] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009

[49] G. Mahoux, “Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients”, The Painlevé Property. One Century Later, ed. R. Conte, Springer, New York, 1999, 35–76 | MR | Zbl