Asymptotic behavior of dispersive waves in a spiral structure at large times
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 21-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the sine-Gordon integrable model for spiral magnetic structures, we investigate the behavior at large times of a weakly nonlinear dispersive wave field generated by a spatially local initial excitation of the structure. The method used is based on a direct asymptotic analysis of the corresponding matrix of the Riemann problem on the torus.
Mots-clés : spiral structure, sine-Gordon equation
Keywords: asymptotic behavior, dispersive wave.
@article{TMF_2016_187_1_a2,
     author = {V. V. Kiselev},
     title = {Asymptotic behavior of dispersive waves in a~spiral structure at large times},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {21--38},
     year = {2016},
     volume = {187},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a2/}
}
TY  - JOUR
AU  - V. V. Kiselev
TI  - Asymptotic behavior of dispersive waves in a spiral structure at large times
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 21
EP  - 38
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a2/
LA  - ru
ID  - TMF_2016_187_1_a2
ER  - 
%0 Journal Article
%A V. V. Kiselev
%T Asymptotic behavior of dispersive waves in a spiral structure at large times
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 21-38
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a2/
%G ru
%F TMF_2016_187_1_a2
V. V. Kiselev. Asymptotic behavior of dispersive waves in a spiral structure at large times. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 21-38. http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a2/

[1] P. Bak, Rep. Progr. Phys., 45:6 (1982), 587–629 | DOI | MR

[2] V. L. Pokrovsky, A. L. Talapov, Theory of Incommensurate Crystals, Harwood Acad. Publ., New York, 1984

[3] I. F. Lyuksyutov, A. G. Naumovets, V. A. Pokrovskii, Dvumernye kristally, Naukova dumka, Kiev, 1988

[4] I. E. Dzyaloshinskii, ZhETF, 47:3(9) (1964), 992–1002

[5] Yu. A. Izyumov, Difraktsiya neitronov na dlinnoperiodicheskikh strukturakh, Energoatomizdat, M., 1987

[6] I. Dzyaloshinskii, Europhys. Lett., 83:6 (2008), 67001, 2 pp. | DOI

[7] A. B. Borisov, V. V. Kiselev, Nelineinye volny, solitony i lokalizovannye struktury v magnetikakh, v. 2, Topologicheskie solitony, dvumernye i trekhmernye uzory, UrO RAN, Ekaterinburg, 2011

[8] A. S. Kovalev, I. V. Gerasimchuk, ZhETF, 122:5 (2002), 1116–1124 | DOI

[9] A. B. Borisov, J. Kishine, Y. G. Bostrem, A. S. Ovchinnikov, Phys. Rev. B., 79:13 (2009), 134436–134446, arXiv: 0901.1423 | DOI

[10] V. V. Kiselev, A. A. Raskovalov, TMF, 173:2 (2012), 268–292 | DOI | DOI | MR | Zbl

[11] A. R. Its, Dokl. AN SSSR, 261:1 (1981), 14–18 | MR | Zbl

[12] A. R. Its, Izv. AN SSSR, 49:3 (1985), 530–565 | DOI | MR | Zbl

[13] A. R. Its, V. Yu. Novokshenov, The Isomonodromy Deformation Method in Theory of Painleve Equations, Lecture Notes in Mathematics, 1191, Springer, Berlin, 1986 | DOI | MR

[14] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. S. Fokas, Transtsendenty Penleve. Metod zadachi Rimana, IKI, M.; RKhD, Izhevsk, 2005

[15] H. Segur, M. J. Ablowitz, Physica D, 3:1–2 (1981), 165–184 | DOI | Zbl

[16] A. R. Its, V. E. Petrov, Dokl. AN SSSR, 265:6 (1982), 1302–1304 | MR | Zbl

[17] P. Deift, X. Zhou, Bull. Amer. Math. Soc. (N. S.), 26:1 (1992), 119–123 | DOI | MR | Zbl

[18] P. Deift, X. Zhou, Ann. Math., 137:2 (1993), 295–368 | DOI | MR | Zbl

[19] P. Deift, A. Its, X. Zhou, “Long-time asymptotics for integrable nonlinear wave equations”, Important Developments in Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 181–204 | DOI | MR | Zbl

[20] A. B. Borisov, V. V. Kiselev, Kvaziodnomernye magnitnye solitony, Fizmatlit, M., 2014

[21] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 3, Ellipticheskie i avtomorfnye funktsii, funktsii Lame i Mate, Nauka, M., 1967 | MR | Zbl

[22] P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der mathematischen Wissenschaften, 67, Springer, New York, 1971 | MR | Zbl

[23] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl | Zbl

[24] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR | MR | Zbl

[25] P. Deift, X. Zhou, Commun. Math. Phys., 165 (1994), 175–191 | DOI | MR | Zbl

[26] E. A. Kuznetsov, A. V. Mikhailov, I. A. Shimokhin, Physica D, 87:1–4 (1995), 201–215 | DOI | MR | Zbl