Mots-clés : phase transition
@article{TMF_2016_187_1_a11,
author = {F. M. Mukhamedov and M. Kh. Saburov and O. N. Khakimov},
title = {Translation-invariant $p$-adic {quasi-Gibbs} measures for {the~Ising{\textendash}Vannimenus} model on {a~Cayley} tree},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {155--176},
year = {2016},
volume = {187},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a11/}
}
TY - JOUR AU - F. M. Mukhamedov AU - M. Kh. Saburov AU - O. N. Khakimov TI - Translation-invariant $p$-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 155 EP - 176 VL - 187 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a11/ LA - ru ID - TMF_2016_187_1_a11 ER -
%0 Journal Article %A F. M. Mukhamedov %A M. Kh. Saburov %A O. N. Khakimov %T Translation-invariant $p$-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 155-176 %V 187 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a11/ %G ru %F TMF_2016_187_1_a11
F. M. Mukhamedov; M. Kh. Saburov; O. N. Khakimov. Translation-invariant $p$-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 155-176. http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a11/
[1] F. Mukhamedov, M. Dogan, H. Akin, J. Stat. Mech. Theory Exp., 2014:10 (2014), P10031, 21 pp. | DOI | MR
[2] O. N. Khakimov, $p$-Adic Numbers Ultrametric Anal. Appl., 5:3 (2013), 194–203 | DOI | MR | Zbl
[3] O. N. Khakimov, TMF, 179:1 (2014), 13–23 | DOI | DOI | MR | Zbl
[4] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl
[5] M. Khamraev, F. M. Mukhamedov, J. Math. Phys., 45:11 (2004), 4025–4034 | DOI | MR | Zbl
[6] F. Mukhamedov, M. Dogan, Rep. Math. Phys., 75:1 (2015), 25–46 | DOI | MR | Zbl
[7] F. Mukhamedov, Rep. Math. Phys., 70:3 (2012), 385–406 | DOI | MR | Zbl
[8] F. Mukhamedov, Math. Phys. Anal. Geom., 16:1 (2013), 49–87 | DOI | MR | Zbl
[9] F. Mukhamedov, J. Stat. Mech. Theory Exp., 2014 (2014), P01007, 23 pp. | DOI | MR
[10] F. Mukhamedov, $p$-Adic Numbers Ultrametric Anal. Appl., 6:4 (2014), 310–317 | DOI | MR | Zbl
[11] F. Mukhamedov, Kh. Akin, TMF, 176:3 (2013), 513–528 | DOI | DOI | MR | Zbl
[12] A. C. M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978 | MR | Zbl
[13] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl
[14] J. Vannimenus, Z. Phys. B, 43:2 (1981), 141–148 | DOI | MR
[15] N. Ganihodjaev, H. Akin, S. Temir, S. Uguz, A. M. Nawi, J. Phys.: Conf. Ser., 435:1 (2013), 012031, 8 pp. | DOI
[16] U. A. Rozikov, H. Akin, S. Ug̃uz, Math. Phys. Anal. Geom., 17:1–2 (2014), 103–114 | DOI | MR | Zbl
[17] N. Koblitz, $p$-Adic Numbers, $p$-Adic Analysis and Zeta-Function, Graduate Texts in Mathematics, 58, Springer, New York, 1977 | DOI | MR
[18] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics, 1, World Sci., Singapore, 1994 | MR
[19] M. Avendaño, T. Krick, A. Pacetti, Found Comput. Math., 6:1 (2006), 81–120 | DOI | MR | Zbl
[20] A. Ibrahim Abdelhalim, Ultrametric Fewnomial Theory, Ph.D. Thesis, Texas A University, Texas, 2009 http://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7593 | MR
[21] A. Khrennikov, F. Mukhamedov, J. F. F. Mendes, Nonlinearity, 20:12 (2007), 2923–2937, arXiv: 0705.0244 | DOI | MR | Zbl
[22] A. M. Robert, A Course of $p$-Adic Analysis, Graduate Texts in Mathematics, 198, Springer, New York, 2000 | DOI | MR
[23] A. Yu. Khrennikov, Russ. J. Math. Phys., 14:2 (2007), 142–159 | DOI | MR | Zbl
[24] A. Yu. Khrennikov, Indag. Math. (N. S.), 7:3 (1996), 311–330 | DOI | MR | Zbl
[25] A. Yu. Khrennikov, S. Ludkovsky, Markov Process. Relat. Fields, 9:1 (2003), 131–162 | MR | Zbl
[26] V. Anashin, A. Khrennikov, Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics, 49, Walter de Gruyter, Berlin, 2009 | DOI | MR | Zbl
[27] A. N. Shiryaev, Veroyatnost, Nauka, M., 1980 | DOI | MR | Zbl
[28] Ganikhodzhaev N. N., Mukhamedov F. M., Rozikov U. A., Uzb. matem. zhurn., 1998, no. 4, 23–29 | MR
[29] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR | Zbl
[30] F. Mukhamedov, H. Akin, J. Math. Anal. Appl., 423:2 (2015), 1203–1218 | DOI | MR | Zbl
[31] A. Fan, S. Fan, L. Liao, Y. Wang, Adv. Math., 257 (2014), 92–135 | DOI | MR | Zbl
[32] M. Khamraev, F. Mukhamedov, J. Math. Anal. Appl., 315:1 (2006), 76–89 | DOI | MR | Zbl
[33] F. M. Mukhamedov, U. A. Rozikov, Methods Funct. Anal. Topology, 10:2 (2004), 21–31 | MR | Zbl
[34] U. A. Rozikov, I. A. Sattorov, $p$-Adic Numbers Ultrametric Anal. Appl., 6:1 (2014), 54–65 | DOI | MR | Zbl