Nonlocal Darboux transformation of the two-dimensional stationary
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 12-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nonlocal Darboux transformation of the two-dimensional stationary Schrödinger equation and establish its relation to the Moutard transformation. We show that the Moutard transformation is a special case of the nonlocal Darboux transformation and obtain new examples of solvable two-dimensional stationary Schrödinger operators with smooth potentials as an application of the nonlocal Darboux transformation.
Mots-clés : Darboux transformation, nonlocal variable
Keywords: Schrödinger equation.
@article{TMF_2016_187_1_a1,
     author = {A. G. Kudryavtsev},
     title = {Nonlocal {Darboux} transformation of the~two-dimensional stationary},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {12--20},
     year = {2016},
     volume = {187},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a1/}
}
TY  - JOUR
AU  - A. G. Kudryavtsev
TI  - Nonlocal Darboux transformation of the two-dimensional stationary
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 12
EP  - 20
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a1/
LA  - ru
ID  - TMF_2016_187_1_a1
ER  - 
%0 Journal Article
%A A. G. Kudryavtsev
%T Nonlocal Darboux transformation of the two-dimensional stationary
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 12-20
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a1/
%G ru
%F TMF_2016_187_1_a1
A. G. Kudryavtsev. Nonlocal Darboux transformation of the two-dimensional stationary. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 1, pp. 12-20. http://geodesic.mathdoc.fr/item/TMF_2016_187_1_a1/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR | Zbl

[2] P. M. Morse, K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968

[3] A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, Classics in Applied Mathematics, 33, SIAM, Philadelphia, PA, 2001 | DOI | MR

[4] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[5] P. G. Grinevich, A. E. Mironov, S. P. Novikov, UMN, 65:3(393) (2010), 195–196 | DOI | DOI | MR | Zbl

[6] P. G. Grinevich, UMN, 55:6(336) (2000), 3–70 | DOI | DOI | MR | Zbl

[7] H. Risken, The Fokker–Planck Equation, Springer Series in Synergetics, 18, Springer, Berlin, 1989 | DOI | MR | Zbl

[8] A. G. Kudryavtsev, Phys. Lett. A, 377:38 (2013), 2477–2480, arXiv: 1211.5685 | DOI | MR | Zbl

[9] T. Moutard, J. Ècole Polyt., 45 (1878), 1–11

[10] I. A. Taimanov, S. P. Tsarev, TMF, 157:2 (2008), 188–207, arXiv: 0801.3225 | DOI | DOI | MR | Zbl

[11] A. G. Kudryavtsev, The nonlocal Darboux transformation of the 2D stationary Schrödinger equation and its relation to the Moutard transformation, arXiv: 1303.5858

[12] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR | Zbl

[13] A. A. Andrianov, M. V. Ioffe, D. N. Nishnianidze, Phys. Lett. A, 201:2–3 (1995), 103–110, arXiv: hep-th/9404120 | DOI | MR | Zbl

[14] M. V. Ioffe, J. Phys. A: Math. Gen., 37:43 (2004), 10363–10374, arXiv: hep-th/0405241 | DOI | MR | Zbl

[15] A. A. Andrianov, M. V. Ioffe, J. Phys. A: Math. Theor., 45:50 (2012), 503001, 62 pp. | DOI | MR | Zbl

[16] M. S. Bardavelidze, M. V. Ioffe, D. N. Nishnianidze, Phys. Lett. A, 377:3–4 (2013), 195–199, arXiv: 1211.1461 | DOI | MR | Zbl

[17] I. Sh. Akhatov, R. K. Gazizov, N. Kh. Ibragimov, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 34, 1989, 3–83 | DOI | MR | Zbl

[18] G. W. Bluman, A. F. Cheviakov, S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168, Springer, New York, 2010 | DOI | MR | Zbl