Keywords: probability density, integral probability distribution function, typical realization curve, statistical topography, clustering.
@article{TMF_2016_186_3_a8,
author = {V. I. Klyatskin and K. V. Koshel'},
title = {Statistical structuring theory in parametrically excitable dynamical systems with {a~Gaussian} pump},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {475--495},
year = {2016},
volume = {186},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a8/}
}
TY - JOUR AU - V. I. Klyatskin AU - K. V. Koshel' TI - Statistical structuring theory in parametrically excitable dynamical systems with a Gaussian pump JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 475 EP - 495 VL - 186 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a8/ LA - ru ID - TMF_2016_186_3_a8 ER -
%0 Journal Article %A V. I. Klyatskin %A K. V. Koshel' %T Statistical structuring theory in parametrically excitable dynamical systems with a Gaussian pump %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 475-495 %V 186 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a8/ %G ru %F TMF_2016_186_3_a8
V. I. Klyatskin; K. V. Koshel'. Statistical structuring theory in parametrically excitable dynamical systems with a Gaussian pump. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 475-495. http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a8/
[1] V. I. Klyatskin, Lectures on Dynamics of Stochastic Systems, Elsevier, Boston, MA, 2010 | MR
[2] V. I. Klyatskin, Ocherki po dinamike stokhasticheskikh sistem, Editorial URSS, M., 2012
[3] V. I. Klyatskin, Stochastic Equations: Theory and Applications in Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Springer, New York, 2014 | MR
[4] V. I. Klyatskin, Statisticheskii analiz kogerentnykh yavlenii v stokhasticheskikh dinamicheskikh sistemakh, Editorial URSS, M., 2015
[5] V. I. Klyatskin, UFN, 182:11 (2012), 1235–1237 | DOI | DOI
[6] V. I. Klyatskin, “On the criterion of stochastic structure formation in random media”, Chaos and Complex Systems, Proceedings of the 4th International Interdisciplinary Chaos Symposium (Antalya, Turkey, April 29 – May 2, 2012), eds. S. G. Stavrinides, S. Banerjee, S. H. Caglar, M. Ozer, Springer, Berlin, 2013, 69–74 | DOI
[7] V. I. Klyatskin, TMF, 176:3 (2013), 494–512 | DOI | DOI | MR | Zbl
[8] V. I. Klyatskin, Rus. J. Math. Phys., 20:3 (2013), 295–314 | DOI | MR | Zbl
[9] V. I. Klyatskin, Dinamicheskie sistemy, 4(32):3–4 (2014), 193–236 | Zbl
[10] V. I. Klyatskin, A. I. Saichev, ZhETF, 111:4 (1997), 1297–1313 | DOI
[11] V. I. Klyatskin, T. Elperin, ZhETF, 122:2(8) (2002), 328–340 | DOI
[12] V. I. Klyatskin, ZhETF, 126:5(11) (2004), 1153–1166 | DOI
[13] V. I. Klyatskin, O. G. Chkhetiani, ZhETF, 136:2(8) (2009), 400–413 | DOI
[14] V. I. Klyatskin, K. V. Koshel, UFN, 170:7 (2000), 771–778 | DOI
[15] V. I. Klyatskin, UFN, 181:5 (2011), 457–482 | DOI
[16] V. I. Klyatskin, TMF, 180:1 (2014), 112–124 | DOI | DOI | Zbl