Two integrable systems with integrals of motion of degree four
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 443-455
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss the possibility of using second-order Killing tensors to construct Liouville-integrable Hamiltonian systems that are not Nijenhuis integrable. As an example, we consider two Killing tensors with a nonzero Haantjes torsion that satisfy weaker geometric conditions and also three-dimensional systems corresponding to them that are integrable in Euclidean space and have two quadratic integrals of motion and one fourth-order integral in momenta.
Keywords:
Hamilton–Jacobi equation, separation of variables, Killing tensor.
@article{TMF_2016_186_3_a6,
author = {A. V. Tsiganov},
title = {Two integrable systems with integrals of motion of degree four},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {443--455},
publisher = {mathdoc},
volume = {186},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a6/}
}
A. V. Tsiganov. Two integrable systems with integrals of motion of degree four. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 443-455. http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a6/