Quantum statistical systems in $D$-dimensional space using a~fractional derivative
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 433-442
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the thermodynamic properties of some quantum statistical systems with a fractional Hamiltonian in $D$-dimensional space. We calculate the partition function of the system of $N$ fractional quantum oscillators and the thermodynamic quantities associated with it. We consider the thermal and critical properties of both Bose and Fermi gases in the context of the fractional energy and described by a fractional derivative.
Keywords:
quantum system, partition function, fractional derivative, oscillator, Bose system, critical temperature, Fermi system, thermodynamic property.
Mots-clés : condensation
Mots-clés : condensation
@article{TMF_2016_186_3_a5,
author = {Z. Korichi and M. Meftah},
title = {Quantum statistical systems in $D$-dimensional space using a~fractional derivative},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {433--442},
publisher = {mathdoc},
volume = {186},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a5/}
}
TY - JOUR AU - Z. Korichi AU - M. Meftah TI - Quantum statistical systems in $D$-dimensional space using a~fractional derivative JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 433 EP - 442 VL - 186 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a5/ LA - ru ID - TMF_2016_186_3_a5 ER -
Z. Korichi; M. Meftah. Quantum statistical systems in $D$-dimensional space using a~fractional derivative. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 433-442. http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a5/