Quantum statistical systems in $D$-dimensional space using a fractional derivative
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 433-442 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the thermodynamic properties of some quantum statistical systems with a fractional Hamiltonian in $D$-dimensional space. We calculate the partition function of the system of $N$ fractional quantum oscillators and the thermodynamic quantities associated with it. We consider the thermal and critical properties of both Bose and Fermi gases in the context of the fractional energy and described by a fractional derivative.
Keywords: quantum system, partition function, fractional derivative, oscillator, Bose system, critical temperature, Fermi system, thermodynamic property.
Mots-clés : condensation
@article{TMF_2016_186_3_a5,
     author = {Z. Korichi and M. Meftah},
     title = {Quantum statistical systems in $D$-dimensional space using a~fractional derivative},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {433--442},
     year = {2016},
     volume = {186},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a5/}
}
TY  - JOUR
AU  - Z. Korichi
AU  - M. Meftah
TI  - Quantum statistical systems in $D$-dimensional space using a fractional derivative
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 433
EP  - 442
VL  - 186
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a5/
LA  - ru
ID  - TMF_2016_186_3_a5
ER  - 
%0 Journal Article
%A Z. Korichi
%A M. Meftah
%T Quantum statistical systems in $D$-dimensional space using a fractional derivative
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 433-442
%V 186
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a5/
%G ru
%F TMF_2016_186_3_a5
Z. Korichi; M. Meftah. Quantum statistical systems in $D$-dimensional space using a fractional derivative. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 433-442. http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a5/

[1] K. S. Miller, B. Ross, An Introcduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993 | MR

[2] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999 | MR | Zbl

[3] R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Sci., Singapore, 2000 | MR | Zbl

[4] K. S. Fa, Physica A, 350:2 (2005), 199–206 | DOI

[5] F. Riewe, Phys. Rev. E, 53:2 (1996), 1890–1899 | DOI | MR

[6] F. Riewe, Phys. Rev. E, 55:3 (1997), 3581–3592 | DOI | MR

[7] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford Univ. Press, Oxford, 2005 | MR | Zbl

[8] A. Hussain, S. Ishfaq, Q. A. Naqvi, Prog. Electromagn. Res., 63 (2006), 319–335 | DOI

[9] V. E. Tarasov, Phys. Lett. A, 336:2–3 (2005), 167–174 | DOI | Zbl

[10] V. E. Tarasov, Chaos, 15:2 (2005), 023102, 8 pp., arXiv: nlin/0602029 | DOI | MR | Zbl

[11] B. A. Carreras, V. E. Lynch, G. M. Zaslavsky, Phys. Plasmas, 8:12 (2001), 5096–5103 | DOI

[12] V. E. Tarasov, Phys. Plasmas, 12:8 (2005), 082106, 9 pp. | DOI

[13] G. M. Zaslavsky, Physica D, 76:1–3 (1994), 110–122 | DOI | MR | Zbl

[14] R. R. Nigmatullin, Physica A, 363:2 (2006), 282–298 | DOI

[15] G. M. Zaslavsky, M. A. Edelman, Physica D, 193:1–4 (2004), 128–147 | DOI | MR | Zbl

[16] N. Laskin, G. M. Zaslavsky, Physica A, 368:1 (2006), 38–54, arXiv: nlin/0512010 | DOI

[17] V. E. Tarasov, G. M. Zaslavsky, Chaos, 16:2 (2006), 023110, 13 pp. | DOI | MR | Zbl

[18] V. V. Uchaikin, UFN, 173:8 (2003), 847–876 | DOI | DOI

[19] N. Laskin, Phys. Lett. A, 268:4–6 (2000), 298–305, arXiv: hep-ph/9910419 | DOI | MR | Zbl

[20] X. Guo, M. Xu, J. Math. Phys., 47:8 (2006), 082104, 9 pp. | DOI | MR | Zbl

[21] J. Dong, M. Xu, J. Math. Phys., 48:7 (2007), 072105, 14 pp. | DOI | MR | Zbl

[22] R. Herrmann, Gam. Ori. Chron. Phys., 1:1 (2013), 1–12, arXiv: 1210.4410 | MR

[23] R. Herrmann, Cent. Eur. J. Phys., 11:10 (2013), 1212–1220, arXiv: 1308.4587 | DOI

[24] Z. Korichi, M. T. Meftah, J. Math. Phys., 55:3 (2014), 033302, 9 pp. | DOI | MR | Zbl

[25] Z. Z. Alisultanov, R. P. Meilanov, TMF, 171:3 (2012), 404–416 | DOI | DOI | MR | Zbl

[26] N. Laskin, Phys. Rev. E, 66:5 (2002), 056108, 7 pp., arXiv: quant-ph/0206098 | DOI | MR

[27] N. Laskin, Principles of fractional quantum mechanics, arXiv: 1009.5533 | MR

[28] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | Zbl | Zbl

[29] K. Huang, Statistical Mechanics, John Wiley and Sons, New York, 1963 | MR

[30] Z. Yan, Eur. J. Phys., 21:6 (2000), 625–631 | DOI | Zbl

[31] G. Su, Y. Cai, J. Chen, J. Phys. A: Math. Theor., 42:12 (2009), 125003, 7 pp. | DOI | MR | Zbl

[32] S. Luca, J. Math. Phys., 41:12 (2000), 8016–8024 | DOI | MR | Zbl

[33] Z. Yan, M. Li, L. Chen, C. Chen, J. Chen, J. Phys. A: Math. Gen., 32:22 (1999), 4069–4078 | DOI | Zbl