Solution of the problem of charge motion in crossed electric and magnetic fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 508-514 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the method of first integrals, we find an exact solution for the relativistic motion of a charge in orthogonal and uniform electric and magnetic fields with respect to laboratory time and for any value of the dimensionless governing parameter equal to the ratio of the magnetic field strength to the electric field strength.
Keywords: equation of motion of a charged particle in relativistic mechanics, method of first integrals, uniform magnetic field, uniform electric field.
@article{TMF_2016_186_3_a10,
     author = {B. M. Barbashov and A. B. Pestov},
     title = {Solution of the~problem of charge motion in crossed electric and magnetic fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {508--514},
     year = {2016},
     volume = {186},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a10/}
}
TY  - JOUR
AU  - B. M. Barbashov
AU  - A. B. Pestov
TI  - Solution of the problem of charge motion in crossed electric and magnetic fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 508
EP  - 514
VL  - 186
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a10/
LA  - ru
ID  - TMF_2016_186_3_a10
ER  - 
%0 Journal Article
%A B. M. Barbashov
%A A. B. Pestov
%T Solution of the problem of charge motion in crossed electric and magnetic fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 508-514
%V 186
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a10/
%G ru
%F TMF_2016_186_3_a10
B. M. Barbashov; A. B. Pestov. Solution of the problem of charge motion in crossed electric and magnetic fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 508-514. http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a10/

[1] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 2, Teoriya polya, Nauka, M., 1967 | MR

[2] G. A. Schott, Electromagnetic Radiation and the Mechanical Reaction, Arising from It, Being an Adams Prize Essay in the University of Cambridge, Cambridge Univ. Press, Cambridge, 1912 | Zbl

[3] S. A. Boguslavskii, Izbrannye trudy po fizike, Fizmatgiz, M., 1961 | Zbl

[4] V. V. Batygin, I. N. Toptygin, Sbornik zadach po elektrodinamike i spetsialnoi teorii otnositelnosti, Lan, SPb., 2010 | MR

[5] K. Itsikson, Zh.-B. Zyuber, Kvantovaya teoriya polya, Mir, M., 1984 | MR | MR

[6] Y. Friedman, M. D. Semon, Phys. Rev. E, 72:2 (2005), 026603 | DOI

[7] S. A. Chin, J. Math. Phys., 50:1 (2009), 012904, 7 pp., arXiv: 0809.0859 | DOI | MR | Zbl

[8] D. I. Blokhintsev, Osnovy kvantovoi mekhaniki, Vysshaya shkola, M., 1963 | MR