Mots-clés : Laplace equation, d'Alembert equation.
@article{TMF_2016_186_3_a1,
author = {V. M. Zhuravlev},
title = {Multidimensional quasilinear first-order equations and multivalued solutions of the~elliptic and hyperbolic equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {371--385},
year = {2016},
volume = {186},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a1/}
}
TY - JOUR AU - V. M. Zhuravlev TI - Multidimensional quasilinear first-order equations and multivalued solutions of the elliptic and hyperbolic equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 371 EP - 385 VL - 186 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a1/ LA - ru ID - TMF_2016_186_3_a1 ER -
%0 Journal Article %A V. M. Zhuravlev %T Multidimensional quasilinear first-order equations and multivalued solutions of the elliptic and hyperbolic equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 371-385 %V 186 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a1/ %G ru %F TMF_2016_186_3_a1
V. M. Zhuravlev. Multidimensional quasilinear first-order equations and multivalued solutions of the elliptic and hyperbolic equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 371-385. http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a1/
[1] V. M. Zhuravlev, TMF, 174:2 (2013), 272–284 | DOI | DOI | MR | Zbl
[2] V. M. Zhuravlev, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 2013, no. 4, 56–67
[3] B. L. Rozhdestvenskii, N. N. Yanenko, Cistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR | MR | Zbl
[4] A. G. Kulikovskii, E. I. Sveshnikova, A. P. Chugainova, Matematicheskie metody izucheniya razryvnykh reshenii nelineinykh giperbolicheskikh sistem uravnenii, Lektsionnye kursy NOTs, 16, MIAN, M., 2010 | DOI | Zbl
[5] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | DOI | MR | MR | Zbl
[6] R. Penrose, W. Rindler, Spinors and Space-Time, v. 2, Spinor and Twistor Methods in Space-Time Geometry, Cambridge Univ. Press, Cambridge, 1986 ; V. V. Kassandrov, J. A. Riscalla, “Particles as singularities within the unified algebraic field dynamics”, Geometrization of Physics III (Kazan, Russia, October 1–5, 1997), ed. V. I. Bashkov, Kazan State Univ., Kazan, 1997, 199–212, arXiv: gr-qc/9809056 | MR
[7] S. P. Tsarev, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl
[8] E. V. Ferapontov, K. R. Khusnutdinova, Commun. Math. Phys., 248:1 (2004), 187–206 | DOI | MR | Zbl
[9] E. V. Ferapontov, K. R. Khusnutdinova, M. V. Pavlov, TMF, 144:1 (2005), 35–43 | DOI | DOI | MR | Zbl
[10] V. M. Zhuravlev, Gravit. Cosmol., 17:3 (2011), 201–217 | DOI | MR | Zbl