Multidimensional quasilinear first-order equations and multivalued solutions of the elliptic and hyperbolic equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 371-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss an extension of the theory of multidimensional second-order equations of the elliptic and hyperbolic types related to multidimensional quasilinear autonomous first-order partial differential equations. Calculating the general integrals of these equations allows constructing exact solutions in the form of implicit functions. We establish a connection with hydrodynamic equations. We calculate the number of free functional parameters of the constructed solutions. We especially construct and analyze implicit solutions of the Laplace and d'Alembert equations in a coordinate space of arbitrary finite dimension. In particular, we construct generalized Penrose–Rindler solutions of the d'Alembert equation in $3{+}1$ dimensions.
Keywords: exact solution of multidimensional nonlinear hyperbolic equations, exact solution of multidimensional nonlinear elliptic equations, multivalued solution, system of nonlinear equations of hydrodynamic type, electromagnetic wave equation
Mots-clés : Laplace equation, d'Alembert equation.
@article{TMF_2016_186_3_a1,
     author = {V. M. Zhuravlev},
     title = {Multidimensional quasilinear first-order equations and multivalued solutions of the~elliptic and hyperbolic equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {371--385},
     year = {2016},
     volume = {186},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a1/}
}
TY  - JOUR
AU  - V. M. Zhuravlev
TI  - Multidimensional quasilinear first-order equations and multivalued solutions of the elliptic and hyperbolic equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 371
EP  - 385
VL  - 186
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a1/
LA  - ru
ID  - TMF_2016_186_3_a1
ER  - 
%0 Journal Article
%A V. M. Zhuravlev
%T Multidimensional quasilinear first-order equations and multivalued solutions of the elliptic and hyperbolic equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 371-385
%V 186
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a1/
%G ru
%F TMF_2016_186_3_a1
V. M. Zhuravlev. Multidimensional quasilinear first-order equations and multivalued solutions of the elliptic and hyperbolic equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 371-385. http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a1/

[1] V. M. Zhuravlev, TMF, 174:2 (2013), 272–284 | DOI | DOI | MR | Zbl

[2] V. M. Zhuravlev, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 2013, no. 4, 56–67

[3] B. L. Rozhdestvenskii, N. N. Yanenko, Cistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR | MR | Zbl

[4] A. G. Kulikovskii, E. I. Sveshnikova, A. P. Chugainova, Matematicheskie metody izucheniya razryvnykh reshenii nelineinykh giperbolicheskikh sistem uravnenii, Lektsionnye kursy NOTs, 16, MIAN, M., 2010 | DOI | Zbl

[5] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | DOI | MR | MR | Zbl

[6] R. Penrose, W. Rindler, Spinors and Space-Time, v. 2, Spinor and Twistor Methods in Space-Time Geometry, Cambridge Univ. Press, Cambridge, 1986 ; V. V. Kassandrov, J. A. Riscalla, “Particles as singularities within the unified algebraic field dynamics”, Geometrization of Physics III (Kazan, Russia, October 1–5, 1997), ed. V. I. Bashkov, Kazan State Univ., Kazan, 1997, 199–212, arXiv: gr-qc/9809056 | MR

[7] S. P. Tsarev, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl

[8] E. V. Ferapontov, K. R. Khusnutdinova, Commun. Math. Phys., 248:1 (2004), 187–206 | DOI | MR | Zbl

[9] E. V. Ferapontov, K. R. Khusnutdinova, M. V. Pavlov, TMF, 144:1 (2005), 35–43 | DOI | DOI | MR | Zbl

[10] V. M. Zhuravlev, Gravit. Cosmol., 17:3 (2011), 201–217 | DOI | MR | Zbl