@article{TMF_2016_186_3_a0,
author = {Runliang Lin and Tiancheng Cao and Xiaojun Liu and Yunbo Zeng},
title = {Bilinear identities for an~extended {B-type} {Kadomtsev{\textendash}Petviashvili} hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {357--370},
year = {2016},
volume = {186},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a0/}
}
TY - JOUR AU - Runliang Lin AU - Tiancheng Cao AU - Xiaojun Liu AU - Yunbo Zeng TI - Bilinear identities for an extended B-type Kadomtsev–Petviashvili hierarchy JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 357 EP - 370 VL - 186 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a0/ LA - ru ID - TMF_2016_186_3_a0 ER -
%0 Journal Article %A Runliang Lin %A Tiancheng Cao %A Xiaojun Liu %A Yunbo Zeng %T Bilinear identities for an extended B-type Kadomtsev–Petviashvili hierarchy %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 357-370 %V 186 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a0/ %G ru %F TMF_2016_186_3_a0
Runliang Lin; Tiancheng Cao; Xiaojun Liu; Yunbo Zeng. Bilinear identities for an extended B-type Kadomtsev–Petviashvili hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 357-370. http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a0/
[1] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, 13–16 May, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl
[2] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI | MR | Zbl
[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Physica D, 4:3 (1982), 343–365 | DOI | MR | Zbl
[4] J.-P. Cheng, J.-S. He, S. Hu, J. Math. Phys., 51:5 (2010), 053514, 19 pp., arXiv: 1003.5987 | DOI | MR | Zbl
[5] H.-F. Shen, M.-H. Tu, J. Math. Phys., 52:3 (2011), 032704, 21 pp. | DOI | MR | Zbl
[6] Y. Cheng, Y.-J. Zhang, Inverse Problems, 10:2 (1994), L11–L17 | DOI | MR | Zbl
[7] I. Loris, R. Willox, Inverse Problems, 13:2 (1997), 411–420 | DOI | MR | Zbl
[8] C. S. Xiong, Lett. Math. Phys., 36:3 (1996), 223–229 | DOI | MR | Zbl
[9] M. Kamata, A. Nakamula, J. Phys. A: Math. Gen., 35:45 (2002), 9657–9670, arXiv: nlin/0207037 | DOI | MR | Zbl
[10] A. Dimakis, F. Müller-Hoissen, “Extension of Moyal-deformed hierarchies of soliton equations”, Symmetry Methods in Physics, Proceedings of XI International Conference (Prague, 21–24 June, 2004), eds. C̆. Burdik, O. Novratil, S. Pos̆ta, JINR, Dubna, 2004, 10 pp. , arXiv: http://www1.jinr.ru/Proceedings/Burdik-2004/pdf/mueller.pdfnlin/0408023
[11] A. Dimakis, F. Müller-Hoissen, J. Phys. A: Math. Gen., 37:45 (2004), 10899–10930, arXiv: hep-th/0406112 | DOI | MR | Zbl
[12] G. Carlet, B. Dubrovin, Y. J. Zhang, Moscow Math. J., 4:2 (2004), 313—332, arXiv: nlin/0306060 | MR | Zbl
[13] T. E. Milanov, Duke Math. J., 138:1 (2007), 161–178, arXiv: math/0501336 | DOI | MR | Zbl
[14] K. Takasaki, J. Phys. A: Math. Theor., 43 (2010), 434032, 15 pp., arXiv: 1002.4688 | DOI | MR | Zbl
[15] C. Z. Li, J. S. He, K. Wu, Y. Cheng, J. Math. Phys., 51:4 (2010), 043514, 32 pp., arXiv: 0906.0624 | DOI | MR | Zbl
[16] R. Willox, M. Hattori, Discretisations of constrained KP hierarchies, arXiv: 1406.5828 | MR
[17] O. Chvartatskyi, Yu. Sydorenko, SIGMA, 11 (2015), 028, 20 pp. | MR | Zbl
[18] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology, and Mathematical Physics, Translations American Mathematical Society. Ser. 2, 224, Advances in the Mathematical Sciences, 61, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 125–138, arXiv: 0801.4143 | MR | Zbl
[19] R.-L. Lin, Y.-B. Zeng, W.-X. Ma, Physica A, 291:1–4 (2001), 287–298 | DOI | MR | Zbl
[20] R.-L. Lin, H.-S. Yao, Y.-B. Zeng, SIGMA, 2 (2006), 096, 8 pp., arXiv: nlin/0701003 | DOI | MR | Zbl
[21] R.-L. Lin, H. Peng, M. Mañas, J. Phys. A: Math. Theor., 43:43 (2010), 434022, 15 pp., arXiv: 1005.3878 | DOI | MR | Zbl
[22] V. K. Mel'nikov, Lett. Math. Phys., 7:2 (1983), 129–136 | DOI | MR | Zbl
[23] V. K. Mel'nikov, Commun. Math. Phys., 126:1 (1989), 201–215 | DOI | MR | Zbl
[24] A. Doliwa, R.-L. Lin, Phys. Lett. A, 378:28–29 (2014), 1925–1931, arXiv: 1310.4636 | DOI | MR | Zbl
[25] R.-L. Lin, X.-J. Liu, Y.-B. Zeng, J. Nonlinear Math. Phys., 20:2 (2013), 214–228 | DOI | MR
[26] H.-X. Wu, X.-J. Liu, Y.-B. Zeng, Commun. Theor. Phys., 51:2 (2009), 193–199 | DOI | MR | Zbl
[27] X.-J. Liu, Y.-B. Zeng, R.-L. Lin, Phys. Lett. A, 372:21 (2008), 3819–3823, arXiv: 0710.4015 | DOI | MR | Zbl
[28] X.-B. Hu, H.-Y. Wang, Inverse Problems, 22:5 (2006), 1903–1920 | DOI | MR | Zbl
[29] X.-B. Hu, H.-Y. Wang, Inverse Problems, 23:4 (2007), 1433–1444 | DOI | MR | Zbl
[30] W. Oevel, W. Schief, Rev. Math. Phys., 6:6 (1994), 1301–1338 | DOI | MR | Zbl
[31] I. Loris, R. Willox, J. Math. Phys., 40:3 (1999), 1420–1431 | DOI | MR | Zbl
[32] H. Aratyn, E. Nissimov, S. Pacheva, Commun. Math. Phys., 193:3 (1998), 493–525 | DOI | MR | Zbl
[33] H. Aratyn, E. Nissimov, S. Pacheva, “Multi-component matrix KP hierarchies as symmetry-enhanced scalar KP hierarchies and their Darboux–Bäcklund solutions”, Bäcklund and Darboux Transformations. The Geometry of Solitons (Halifax, Canada, June 4–9, 1999), CRM Proceedings and Lecture Notes, 29, eds. A. Coley, D. Levi, R. Milson, C. Rogers, P. Winternitz, AMS, Providence, RI, 2001, 109–120 | DOI | MR | Zbl
[34] H.-F. Shen, N.-C. Lee, M.-H. Tu, J. Phys. A: Math. Theor., 44:13 (2011), 135205, 16 pp. | DOI | MR | Zbl
[35] R. Hirota, The Direct Method in Soliton Theory, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl