Bilinear identities for an extended B-type Kadomtsev–Petviashvili hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 357-370 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct bilinear identities for wave functions of an extended B-type Kadomtsev–Petviashvili (BKP) hierarchy containing two types of $(2{+}1)$-dimensional Sawada–Kotera equations with a self-consistent source. Introducing an auxiliary variable corresponding to the extended flow for the BKP hierarchy, we find the $\tau$-function and bilinear identities for this extended BKP hierarchy. The bilinear identities generate all the Hirota bilinear equations for the zero-curvature forms of this extended BKP hierarchy. As examples, we obtain the Hirota bilinear equations for the two types of $(2{+}1)$-dimensional Sawada–Kotera equations in explicit form.
Keywords: BKP hierarchy, self-consistent source, bilinear identity, tau function, Hirota bilinear form.
@article{TMF_2016_186_3_a0,
     author = {Runliang Lin and Tiancheng Cao and Xiaojun Liu and Yunbo Zeng},
     title = {Bilinear identities for an~extended {B-type} {Kadomtsev{\textendash}Petviashvili} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {357--370},
     year = {2016},
     volume = {186},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a0/}
}
TY  - JOUR
AU  - Runliang Lin
AU  - Tiancheng Cao
AU  - Xiaojun Liu
AU  - Yunbo Zeng
TI  - Bilinear identities for an extended B-type Kadomtsev–Petviashvili hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 357
EP  - 370
VL  - 186
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a0/
LA  - ru
ID  - TMF_2016_186_3_a0
ER  - 
%0 Journal Article
%A Runliang Lin
%A Tiancheng Cao
%A Xiaojun Liu
%A Yunbo Zeng
%T Bilinear identities for an extended B-type Kadomtsev–Petviashvili hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 357-370
%V 186
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a0/
%G ru
%F TMF_2016_186_3_a0
Runliang Lin; Tiancheng Cao; Xiaojun Liu; Yunbo Zeng. Bilinear identities for an extended B-type Kadomtsev–Petviashvili hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 3, pp. 357-370. http://geodesic.mathdoc.fr/item/TMF_2016_186_3_a0/

[1] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, 13–16 May, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl

[2] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI | MR | Zbl

[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Physica D, 4:3 (1982), 343–365 | DOI | MR | Zbl

[4] J.-P. Cheng, J.-S. He, S. Hu, J. Math. Phys., 51:5 (2010), 053514, 19 pp., arXiv: 1003.5987 | DOI | MR | Zbl

[5] H.-F. Shen, M.-H. Tu, J. Math. Phys., 52:3 (2011), 032704, 21 pp. | DOI | MR | Zbl

[6] Y. Cheng, Y.-J. Zhang, Inverse Problems, 10:2 (1994), L11–L17 | DOI | MR | Zbl

[7] I. Loris, R. Willox, Inverse Problems, 13:2 (1997), 411–420 | DOI | MR | Zbl

[8] C. S. Xiong, Lett. Math. Phys., 36:3 (1996), 223–229 | DOI | MR | Zbl

[9] M. Kamata, A. Nakamula, J. Phys. A: Math. Gen., 35:45 (2002), 9657–9670, arXiv: nlin/0207037 | DOI | MR | Zbl

[10] A. Dimakis, F. Müller-Hoissen, “Extension of Moyal-deformed hierarchies of soliton equations”, Symmetry Methods in Physics, Proceedings of XI International Conference (Prague, 21–24 June, 2004), eds. C̆. Burdik, O. Novratil, S. Pos̆ta, JINR, Dubna, 2004, 10 pp. , arXiv: http://www1.jinr.ru/Proceedings/Burdik-2004/pdf/mueller.pdfnlin/0408023

[11] A. Dimakis, F. Müller-Hoissen, J. Phys. A: Math. Gen., 37:45 (2004), 10899–10930, arXiv: hep-th/0406112 | DOI | MR | Zbl

[12] G. Carlet, B. Dubrovin, Y. J. Zhang, Moscow Math. J., 4:2 (2004), 313—332, arXiv: nlin/0306060 | MR | Zbl

[13] T. E. Milanov, Duke Math. J., 138:1 (2007), 161–178, arXiv: math/0501336 | DOI | MR | Zbl

[14] K. Takasaki, J. Phys. A: Math. Theor., 43 (2010), 434032, 15 pp., arXiv: 1002.4688 | DOI | MR | Zbl

[15] C. Z. Li, J. S. He, K. Wu, Y. Cheng, J. Math. Phys., 51:4 (2010), 043514, 32 pp., arXiv: 0906.0624 | DOI | MR | Zbl

[16] R. Willox, M. Hattori, Discretisations of constrained KP hierarchies, arXiv: 1406.5828 | MR

[17] O. Chvartatskyi, Yu. Sydorenko, SIGMA, 11 (2015), 028, 20 pp. | MR | Zbl

[18] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology, and Mathematical Physics, Translations American Mathematical Society. Ser. 2, 224, Advances in the Mathematical Sciences, 61, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 125–138, arXiv: 0801.4143 | MR | Zbl

[19] R.-L. Lin, Y.-B. Zeng, W.-X. Ma, Physica A, 291:1–4 (2001), 287–298 | DOI | MR | Zbl

[20] R.-L. Lin, H.-S. Yao, Y.-B. Zeng, SIGMA, 2 (2006), 096, 8 pp., arXiv: nlin/0701003 | DOI | MR | Zbl

[21] R.-L. Lin, H. Peng, M. Mañas, J. Phys. A: Math. Theor., 43:43 (2010), 434022, 15 pp., arXiv: 1005.3878 | DOI | MR | Zbl

[22] V. K. Mel'nikov, Lett. Math. Phys., 7:2 (1983), 129–136 | DOI | MR | Zbl

[23] V. K. Mel'nikov, Commun. Math. Phys., 126:1 (1989), 201–215 | DOI | MR | Zbl

[24] A. Doliwa, R.-L. Lin, Phys. Lett. A, 378:28–29 (2014), 1925–1931, arXiv: 1310.4636 | DOI | MR | Zbl

[25] R.-L. Lin, X.-J. Liu, Y.-B. Zeng, J. Nonlinear Math. Phys., 20:2 (2013), 214–228 | DOI | MR

[26] H.-X. Wu, X.-J. Liu, Y.-B. Zeng, Commun. Theor. Phys., 51:2 (2009), 193–199 | DOI | MR | Zbl

[27] X.-J. Liu, Y.-B. Zeng, R.-L. Lin, Phys. Lett. A, 372:21 (2008), 3819–3823, arXiv: 0710.4015 | DOI | MR | Zbl

[28] X.-B. Hu, H.-Y. Wang, Inverse Problems, 22:5 (2006), 1903–1920 | DOI | MR | Zbl

[29] X.-B. Hu, H.-Y. Wang, Inverse Problems, 23:4 (2007), 1433–1444 | DOI | MR | Zbl

[30] W. Oevel, W. Schief, Rev. Math. Phys., 6:6 (1994), 1301–1338 | DOI | MR | Zbl

[31] I. Loris, R. Willox, J. Math. Phys., 40:3 (1999), 1420–1431 | DOI | MR | Zbl

[32] H. Aratyn, E. Nissimov, S. Pacheva, Commun. Math. Phys., 193:3 (1998), 493–525 | DOI | MR | Zbl

[33] H. Aratyn, E. Nissimov, S. Pacheva, “Multi-component matrix KP hierarchies as symmetry-enhanced scalar KP hierarchies and their Darboux–Bäcklund solutions”, Bäcklund and Darboux Transformations. The Geometry of Solitons (Halifax, Canada, June 4–9, 1999), CRM Proceedings and Lecture Notes, 29, eds. A. Coley, D. Levi, R. Milson, C. Rogers, P. Winternitz, AMS, Providence, RI, 2001, 109–120 | DOI | MR | Zbl

[34] H.-F. Shen, N.-C. Lee, M.-H. Tu, J. Phys. A: Math. Theor., 44:13 (2011), 135205, 16 pp. | DOI | MR | Zbl

[35] R. Hirota, The Direct Method in Soliton Theory, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl