Noncommutative correction to the~Cornell potential in heavy-quarkonium atoms
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 323-329
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the effect of space–time noncommutativity on the Cornell potential in heavy-quarkonium systems. It is known that the space–time noncommutativity can create bound states, and we therefore consider the noncommutative geometry of the space–time as a correction in quarkonium models. Furthermore, we take the experimental hyperfine measurements of the bottomium ground state as an upper limit on the noncommutative energy correction and derive the maximum possible value of the noncommutative parameter $\theta$, obtaining $\theta\le37.94\cdot10^{-34}$ m$^2$. Finally, we use our model to calculate the maximum value of the noncommutative energy correction for energy levels of charmonium and bottomium in $1\mathrm{S}$ and $2\mathrm{S}$ levels. The energy correction as a binding effect in quarkonium system is smaller for charmonium than for bottomium, as expected.
Keywords:
noncommutative space–time, noncommutative parameter, Cornell potential, heavy quarkonium, hyperfine splitting.
@article{TMF_2016_186_2_a9,
author = {A. Mirjalili and M. Taki},
title = {Noncommutative correction to {the~Cornell} potential in heavy-quarkonium atoms},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--329},
publisher = {mathdoc},
volume = {186},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a9/}
}
TY - JOUR AU - A. Mirjalili AU - M. Taki TI - Noncommutative correction to the~Cornell potential in heavy-quarkonium atoms JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 323 EP - 329 VL - 186 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a9/ LA - ru ID - TMF_2016_186_2_a9 ER -
A. Mirjalili; M. Taki. Noncommutative correction to the~Cornell potential in heavy-quarkonium atoms. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 323-329. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a9/