Spectrum of a~model three-particle Schr\"odinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 311-322
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the spectrum of a model three-particle Schrödinger operator $H(\varepsilon)$, $\varepsilon>0$. We prove that for a sufficiently small $\varepsilon>0$, this operator has no bound states and no two-particle branches of the spectrum. We also obtain an estimate for the small parameter $\varepsilon$.
Keywords:
Schrödinger operator, spectrum, essential spectrum, discrete spectrum.
@article{TMF_2016_186_2_a8,
author = {Yu. Kh. \`Eshkabilov},
title = {Spectrum of a~model three-particle {Schr\"odinger} operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {311--322},
publisher = {mathdoc},
volume = {186},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a8/}
}
Yu. Kh. Èshkabilov. Spectrum of a~model three-particle Schr\"odinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 311-322. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a8/