Spectrum of a~model three-particle Schr\"odinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 311-322

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the spectrum of a model three-particle Schrödinger operator $H(\varepsilon)$, $\varepsilon>0$. We prove that for a sufficiently small $\varepsilon>0$, this operator has no bound states and no two-particle branches of the spectrum. We also obtain an estimate for the small parameter $\varepsilon$.
Keywords: Schrödinger operator, spectrum, essential spectrum, discrete spectrum.
@article{TMF_2016_186_2_a8,
     author = {Yu. Kh. \`Eshkabilov},
     title = {Spectrum of a~model three-particle {Schr\"odinger} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {311--322},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a8/}
}
TY  - JOUR
AU  - Yu. Kh. Èshkabilov
TI  - Spectrum of a~model three-particle Schr\"odinger operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 311
EP  - 322
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a8/
LA  - ru
ID  - TMF_2016_186_2_a8
ER  - 
%0 Journal Article
%A Yu. Kh. Èshkabilov
%T Spectrum of a~model three-particle Schr\"odinger operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 311-322
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a8/
%G ru
%F TMF_2016_186_2_a8
Yu. Kh. Èshkabilov. Spectrum of a~model three-particle Schr\"odinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 311-322. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a8/