Branches of the essential spectrum of the lattice spin-boson model with at most two photons
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 293-310 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a lattice analogue of the $\mathcal A_m$ model of light radiation with a fixed atom and at most $m$ photons $(m=1,2)$. We describe the essential spectrum of the operator $\mathcal A_2$ in terms of the spectrum of the operator $\mathcal A_1$, i.e., we find the “two-particle” and “three-particle” branches of the essential spectrum of $\mathcal A_2$. We prove that the essential spectrum is a union of at most six intervals, and we study their positions. We derive an estimate for the lower bound of the “two-particle” and “three-particle” branches.
Keywords: spin-boson model, boson Fock space, block operator matrix, annihilation operator, creation operator, essential spectrum, discrete spectrum, Weyl criterion.
@article{TMF_2016_186_2_a7,
     author = {T. H. Rasulov},
     title = {Branches of the~essential spectrum of the~lattice spin-boson model with at most two photons},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {293--310},
     year = {2016},
     volume = {186},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a7/}
}
TY  - JOUR
AU  - T. H. Rasulov
TI  - Branches of the essential spectrum of the lattice spin-boson model with at most two photons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 293
EP  - 310
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a7/
LA  - ru
ID  - TMF_2016_186_2_a7
ER  - 
%0 Journal Article
%A T. H. Rasulov
%T Branches of the essential spectrum of the lattice spin-boson model with at most two photons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 293-310
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a7/
%G ru
%F TMF_2016_186_2_a7
T. H. Rasulov. Branches of the essential spectrum of the lattice spin-boson model with at most two photons. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 293-310. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a7/

[1] C. Tretter, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008 | MR | Zbl

[2] H. Spohn, Commun. Math. Phys., 123:2 (1989), 277–304 | DOI | MR | Zbl

[3] M. Hübner, H. Spohn, Ann. Inst. Henri Poincaré, 62:3 (1995), 289–323 | MR | Zbl

[4] Yu. V. Zhukov, R. A. Minlos, TMF, 103:1 (1995), 63–81 | DOI | MR | Zbl

[5] R. A. Minlos, H. Spohn, “The three-body problem in radioactive decay: The case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, American Mathematical Society Translations Ser. 2, 177, eds. R. L. Dobrushin, R. A. Minlos, M. A. Shubin, A. M. Vershik, AMS, Providence, RI, 1996, 159–193 | MR | Zbl

[6] A. I. Mogilner, “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-Particle Hamiltonians: Spectra and Scattering, Advances in Soviet Mathematics, 5, ed. R. A. Minlos, AMS, Providence, RI, 1991, 139–194 | MR | Zbl

[7] K. O. Fridrikhs, Vozmuscheniya spektra operatorov v gilbertovom prostranstve, Mir, M., 1972 | MR | Zbl

[8] V. A. Malyshev, R. A. Minlos, Lineinye operatory v beskonechnochastichnykh sistemakh, Nauka, M., 1994 | MR | Zbl | Zbl

[9] A. E. Lifschitz, Magnetohydrodynamic and Spectral Theory, Developments in Electromagnetic Theory and Applications, 4, Kluwer, Dordrecht, 1989 | DOI | MR

[10] B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin, 1992 | DOI | MR

[11] M. Muminov, H. Neidhardt, T. Rasulov, J. Math. Phys., 56:5 (2015), 053507, 24 pp., arXiv: 1410.4763 | DOI | MR | Zbl

[12] R. Feinman, Statisticheskaya mekhanika. Kurs lektsii, Mir, M., 1978 | Zbl

[13] S. N. Lakaev, T. Kh. Rasulov, Matem. zametki, 73:4 (2003), 556–564 | DOI | DOI | MR | Zbl

[14] S. Albeverio, S. N. Lakaev, T. H. Rasulov, J. Statist. Phys., 127:2 (2007), 191–220 | DOI | MR | Zbl

[15] T. Kh. Rasulov, Matem. zametki, 83:1 (2008), 78–94 | DOI | DOI | MR | Zbl

[16] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965 | MR | Zbl

[17] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl