Bound states of a two-boson system on a two-dimensional lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 272-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Hamiltonian of a two-boson system on a two-dimensional lattice $\mathbb Z^2$. The Schrödinger operator $H(k_1,k_2)$ of the system for $k_1=k_2= \pi$, where $\mathbf k=(k_1,k_2)$ is the total quasimomentum, has an infinite number of eigenvalues. In the case of a special potential, one eigenvalue is simple, another one is double, and the other eigenvalues have multiplicity three. We prove that the double eigenvalue of $H(\pi,\pi)$ splits into two nondegenerate eigenvalues of $H(\pi,\pi-2\beta)$ for small $\beta>0$ and the eigenvalues of multiplicity three similarly split into three different nondegenerate eigenvalues. We obtain asymptotic formulas with the accuracy of $\beta^2$ and also an explicit form of the eigenfunctions of $H(\pi,\pi-2\beta)$ for these eigenvalues.
Keywords: Hamiltonian, bound state, Schrödinger operator, total quasimomentum, eigenvalue, perturbation theory, Birman–Schwinger principle.
@article{TMF_2016_186_2_a6,
     author = {Zh. I. Abdullaev and K. D. Kuliev},
     title = {Bound states of a~two-boson system on a~two-dimensional lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {272--292},
     year = {2016},
     volume = {186},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a6/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
AU  - K. D. Kuliev
TI  - Bound states of a two-boson system on a two-dimensional lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 272
EP  - 292
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a6/
LA  - ru
ID  - TMF_2016_186_2_a6
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%A K. D. Kuliev
%T Bound states of a two-boson system on a two-dimensional lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 272-292
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a6/
%G ru
%F TMF_2016_186_2_a6
Zh. I. Abdullaev; K. D. Kuliev. Bound states of a two-boson system on a two-dimensional lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 272-292. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a6/

[1] Sh. S. Mamatov, R. A. Minlos, TMF, 79:2 (1989), 163–179 | DOI | MR

[2] R. A. Minlos, A. I. Mogilner, “Some problems concerning spectra of lattice models”, Schrödinger Operators: Standard and Nonstandard (Dubna, 6–10 September, 1988), eds. P. Exner, P. Seba, World Sci., Singapore, 1989, 243–257 | MR | Zbl

[3] J. S. Howland, Pacific J. Math., 55 (1974), 157–176 | DOI | MR | Zbl

[4] Zh. I. Abdullaev, TMF, 147:1, 47–57 | DOI | DOI | MR | Zbl

[5] Zh. I. Abdullaev, TMF, 145:2, 212–220 | DOI | DOI | MR | Zbl

[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. IV, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl | Zbl

[7] J. Rauch, J. Funct. Anal., 35:3 (1980), 304–315 | DOI | MR | Zbl

[8] B. Simon, Ann. Phys., 97:2 (1976), 279–288 | DOI | MR | Zbl

[9] M. Klaus, Ann. Phys., 108:2 (1977), 288–300 | DOI | MR | Zbl

[10] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[11] P. A. Faria da Viega, L. Ioriatti, M. O'Carroll, Phys. Rev. E, 66:1 (2002), 016130, 9 pp. | DOI | MR

[12] Zh. I. Abdullaev, Uzbek. matem. zhurn., 2005, no. 1, 3–11 | MR

[13] A. Sobolev, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[14] Zh. I. Abdullaev, Vestn. SamGU, 2014, no. 5, 6–15

[15] Zh. I. Abdullaev, M. Sh. Faiziev, I. S. Shotemirov, Uzbek. matem. zhurn., 2009, no. 3, 3–10 | MR