Bound states of a~two-boson system on a~two-dimensional lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 272-292
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a Hamiltonian of a two-boson system on a two-dimensional lattice $\mathbb Z^2$. The Schrödinger operator $H(k_1,k_2)$ of the system for $k_1=k_2= \pi$, where $\mathbf k=(k_1,k_2)$ is the total quasimomentum, has an infinite number of eigenvalues. In the case of a special potential, one eigenvalue is simple, another one is double, and the other eigenvalues have multiplicity three. We prove that the double eigenvalue of $H(\pi,\pi)$ splits into two nondegenerate eigenvalues of $H(\pi,\pi-2\beta)$ for small $\beta>0$ and the eigenvalues of multiplicity three similarly split into three different nondegenerate eigenvalues. We obtain asymptotic formulas with the accuracy of $\beta^2$ and also an explicit form of the eigenfunctions of $H(\pi,\pi-2\beta)$ for these eigenvalues.
Keywords:
Hamiltonian, bound state, Schrödinger operator, total quasimomentum,
eigenvalue, perturbation theory, Birman–Schwinger principle.
@article{TMF_2016_186_2_a6,
author = {Zh. I. Abdullaev and K. D. Kuliev},
title = {Bound states of a~two-boson system on a~two-dimensional lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {272--292},
publisher = {mathdoc},
volume = {186},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a6/}
}
TY - JOUR AU - Zh. I. Abdullaev AU - K. D. Kuliev TI - Bound states of a~two-boson system on a~two-dimensional lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 272 EP - 292 VL - 186 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a6/ LA - ru ID - TMF_2016_186_2_a6 ER -
Zh. I. Abdullaev; K. D. Kuliev. Bound states of a~two-boson system on a~two-dimensional lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 272-292. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a6/