Critical exponents and the~pseudo-$\varepsilon$-expansion
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 230-242

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the pseudo-$\varepsilon$-expansions ($\tau$-series) for the critical exponents of a $\lambda\phi^4$-type three-dimensional $O(n)$-symmetric model obtained on the basis of six-loop renormalization-group expansions. We present numerical results in the physically interesting cases $n=1$, $n=2$, $n=3$, and $n=0$ and also for $4\le n\le32$ to clarify the general properties of the obtained series. The pseudo-$\varepsilon$-expansions or the exponents $\gamma$ and $\alpha$ have coefficients that are small in absolute value and decrease rapidly, and direct summation of the $\tau$-series therefore yields quite acceptable numerical estimates, while applying the Padé approximants allows obtaining high-precision results. In contrast, the coefficients of the pseudo-$\varepsilon$-expansion of the scaling correction exponent $\omega$ do not exhibit any tendency to decrease at physical values of $n$. But the corresponding series are sign-alternating, and to obtain reliable numerical estimates, it also suffices to use simple Padé approximants in this case. The pseudo-$\varepsilon$-expansion technique can therefore be regarded as a distinctive resummation method converting divergent renormalization-group series into expansions that are computationally convenient.
Keywords: three-dimensional $O(n)$-symmetric model, critical exponent, pseudo-$\varepsilon$-expansion, numerical result.
Mots-clés : Padé approximant
@article{TMF_2016_186_2_a3,
     author = {M. A. Nikitina and A. I. Sokolov},
     title = {Critical exponents and the~pseudo-$\varepsilon$-expansion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {230--242},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a3/}
}
TY  - JOUR
AU  - M. A. Nikitina
AU  - A. I. Sokolov
TI  - Critical exponents and the~pseudo-$\varepsilon$-expansion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 230
EP  - 242
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a3/
LA  - ru
ID  - TMF_2016_186_2_a3
ER  - 
%0 Journal Article
%A M. A. Nikitina
%A A. I. Sokolov
%T Critical exponents and the~pseudo-$\varepsilon$-expansion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 230-242
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a3/
%G ru
%F TMF_2016_186_2_a3
M. A. Nikitina; A. I. Sokolov. Critical exponents and the~pseudo-$\varepsilon$-expansion. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 230-242. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a3/