Critical exponents and the pseudo-$\varepsilon$-expansion
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 230-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the pseudo-$\varepsilon$-expansions ($\tau$-series) for the critical exponents of a $\lambda\phi^4$-type three-dimensional $O(n)$-symmetric model obtained on the basis of six-loop renormalization-group expansions. We present numerical results in the physically interesting cases $n=1$, $n=2$, $n=3$, and $n=0$ and also for $4\le n\le32$ to clarify the general properties of the obtained series. The pseudo-$\varepsilon$-expansions or the exponents $\gamma$ and $\alpha$ have coefficients that are small in absolute value and decrease rapidly, and direct summation of the $\tau$-series therefore yields quite acceptable numerical estimates, while applying the Padé approximants allows obtaining high-precision results. In contrast, the coefficients of the pseudo-$\varepsilon$-expansion of the scaling correction exponent $\omega$ do not exhibit any tendency to decrease at physical values of $n$. But the corresponding series are sign-alternating, and to obtain reliable numerical estimates, it also suffices to use simple Padé approximants in this case. The pseudo-$\varepsilon$-expansion technique can therefore be regarded as a distinctive resummation method converting divergent renormalization-group series into expansions that are computationally convenient.
Keywords: three-dimensional $O(n)$-symmetric model, critical exponent, pseudo-$\varepsilon$-expansion, numerical result.
Mots-clés : Padé approximant
@article{TMF_2016_186_2_a3,
     author = {M. A. Nikitina and A. I. Sokolov},
     title = {Critical exponents and the~pseudo-$\varepsilon$-expansion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {230--242},
     year = {2016},
     volume = {186},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a3/}
}
TY  - JOUR
AU  - M. A. Nikitina
AU  - A. I. Sokolov
TI  - Critical exponents and the pseudo-$\varepsilon$-expansion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 230
EP  - 242
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a3/
LA  - ru
ID  - TMF_2016_186_2_a3
ER  - 
%0 Journal Article
%A M. A. Nikitina
%A A. I. Sokolov
%T Critical exponents and the pseudo-$\varepsilon$-expansion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 230-242
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a3/
%G ru
%F TMF_2016_186_2_a3
M. A. Nikitina; A. I. Sokolov. Critical exponents and the pseudo-$\varepsilon$-expansion. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 230-242. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a3/

[1] G. A. Baker, Jr., B. G. Nickel, M. S. Green, D. I. Meiron, Phys. Rev. Lett., 36:23 (1976), 1351–1354 | DOI

[2] B. G. Nickel, D. I. Meiron, G. A. Baker, Jr., Compilation of 2-pt and 4-pt graphs for continuous spin mode, University of Guelph, Ontario, 1977

[3] G. A. Baker, Jr., B. G. Nickel, D. I. Meiron, Phys. Rev. B, 17:3 (1978), 1365–1374 | DOI

[4] D. B. Murray, B. G. Nickel, 11D revised estimates for critical exponents for the continuum $n$-vector model in three dimensions, Report University of Guelph, 1991, unpublished

[5] S. A. Antonenko, A. I. Sokolov, Phys. Rev. E, 51:3 (1995), 1894–1898, arXiv: hep-th/9803264 | DOI | MR

[6] J. C. Le Guillou, J. Zinn-Justin, Phys. Rev. B, 21:9 (1980), 3976–3998 | DOI | MR | Zbl

[7] R. Guida, J. Zinn-Justin, J. Phys. A: Math. Gen., 31:40 (1998), 8103–8121, arXiv: cond-mat/9803240 | DOI | MR | Zbl

[8] H. Kleinert, Phys. Rev. D, 60:8 (1999), 085001, 15 pp., arXiv: hep-th/9812197 | DOI

[9] A. A. Pogorelov, I. M. Suslov, ZhETF, 133:6 (2008), 1277–1289, arXiv: 1010.3389 | DOI

[10] J. Zinn-Justin, Phys. Rep., 344:4–6 (2001), 159–178, arXiv: hep-th/0002136 | DOI | MR | Zbl

[11] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, Oxford, 2002 | MR

[12] H. Kleinert, V. Schulte-Frohlinde, Critical Properties of $\phi^4$-Theories, World Sci., Singapore, 2001 | MR

[13] A. Pelissetto, E. Vicari, Phys. Rep., 368:6 (2002), 549–727, arXiv: cond-mat/0012164 | DOI | MR | Zbl

[14] I. M. Suslov, ZhETF, 127:6 (2005), 1350–1402, arXiv: hep-ph/0510142 | DOI

[15] C. von Ferber, Yu. Holovatch, Phys. Rev. E, 56:6 (1997), 6370–6386, arXiv: cond-mat/9705278 | DOI

[16] C. von Ferber, Yu. Holovatch, Phys. Rev. E, 59:6 (1999), 6914–6923, arXiv: cond-mat/9812119 | DOI

[17] R. Folk, Yu. Holovatch, T. Yavors'kii, Phys. Rev. B, 62:18 (2000), 12195–12200, arXiv: cond-mat/0003216 | DOI

[18] Yu. Holovatch, D. Ivaneyko, B. Delamotte, J. Phys. A: Math. Gen., 37:11 (2004), 3569–3575, arXiv: cond-mat/0312260 | DOI | MR | Zbl

[19] P. Calabrese, P. Parruccini, Phys. Rev. B, 71:6 (2005), 064416, 8 pp., arXiv: cond-mat/0411027 | DOI

[20] A. I. Sokolov, M. A. Nikitina, Phys. Rev. E, 89:5 (2014), 052127, 10 pp., arXiv: 1402.3531 | DOI

[21] A. I. Sokolov, M. A. Nikitina, Phys. Rev. E, 90:1 (2014), 012102, 5 pp., arXiv: 1402.3894 | DOI | MR

[22] P. Calabrese, E. V. Orlov, D. V. Pakhnin, A. I. Sokolov, Phys. Rev. B, 70:9 (2004), 094425, 15 pp., arXiv: cond-mat/0405432 | DOI

[23] A. I. Sokolov, FTT, 47:11 (2005), 2056–2059, arXiv: cond-mat/0510088 | DOI

[24] A. I. Sokolov, TMF, 176:1 (2013), 140–149 | DOI | DOI | MR | Zbl

[25] M. A. Nikitina, A. I. Sokolov, Phys. Rev. E, 89:4 (2014), 042146, 6 pp., arXiv: 1312.1062 | DOI

[26] A. I. Sokolov, M. A. Nikitina, Physica A, 444 (2016), 177–181, arXiv: 1402.4318 | DOI

[27] P. Butera, M. Comi, Phys. Rev. B, 56:13 (1997), 8212–8240, arXiv: hep-lat/9703018 | DOI

[28] S. Caracciolo, M. S. Causo, A. Pelissetto, Phys. Rev. E, 57:2 (1998), R1215–R1218, arXiv: cond-mat/9703250 | DOI

[29] M. Hasenbusch, Phys. Rev. B, 82:17 (2010), 174433, 13 pp., arXiv: 1004.4486 | DOI

[30] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. B, 63:21 (2001), 214503, 28 pp., arXiv: cond-mat/0010360 | DOI

[31] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. B, 65:14 (2002), 144520, 21 pp., arXiv: cond-mat/0110336 | DOI

[32] F. Delfino, A. Pelissetto, E. Vicari, Phys. Rev. E, 91:5 (2015), 052109, 12 pp., arXiv: 1502.07599 | DOI | MR

[33] H.-P. Hsu, W. Nadler, P. Grassberger, Macromolecules, 37:12 (2004), 4658–4663, arXiv: cond-mat/0310534 | DOI

[34] M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. E, 65:6 (2002), 066127, 19 pp., arXiv: cond-mat/0201180 | DOI | MR

[35] M. Campostrini, M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B, 74:14 (2006), 144506, 18 pp., arXiv: cond-mat/0605083 | DOI

[36] P. Butera, M. Comi, Phys. Rev. B, 60:9 (1999), 6749–6760, arXiv: hep-lat/9903010 | DOI

[37] A. I. Sokolov, FTT, 40:7 (1998), 1284–1290 | DOI

[38] J. C. Le Guillou, J. Zinn-Justin, J. Physique Lett., 46:4 (1985), 137–141 | DOI

[39] M. Hasenbusch, J. Phys. A: Math. Gen., 34:40 (2001), 8221–8236, arXiv: cond-mat/0010463 | DOI | MR | Zbl