Symmetries and invariant solutions of the~one-dimensional Boltzmann equation for inelastic collisions
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 221-229

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-dimensional integro-differential Boltzmann equation for Maxwell particles with inelastic collisions. We show that the equation has a five-dimensional algebra of point symmetries for all dissipation parameter values and obtain an optimal system of one-dimensional subalgebras and classes of invariant solutions.
Keywords: inelastic Boltzmann equation, Lie symmetry
Mots-clés : invariant solution, optimal system of subalgebras.
@article{TMF_2016_186_2_a2,
     author = {O. V. Ilyin},
     title = {Symmetries and invariant solutions of the~one-dimensional {Boltzmann} equation for inelastic collisions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {221--229},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a2/}
}
TY  - JOUR
AU  - O. V. Ilyin
TI  - Symmetries and invariant solutions of the~one-dimensional Boltzmann equation for inelastic collisions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 221
EP  - 229
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a2/
LA  - ru
ID  - TMF_2016_186_2_a2
ER  - 
%0 Journal Article
%A O. V. Ilyin
%T Symmetries and invariant solutions of the~one-dimensional Boltzmann equation for inelastic collisions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 221-229
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a2/
%G ru
%F TMF_2016_186_2_a2
O. V. Ilyin. Symmetries and invariant solutions of the~one-dimensional Boltzmann equation for inelastic collisions. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a2/