Symmetries and invariant solutions of the~one-dimensional Boltzmann equation for inelastic collisions
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 221-229
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the one-dimensional integro-differential Boltzmann equation for Maxwell particles with inelastic collisions. We show that the equation has a five-dimensional algebra of point symmetries for all dissipation parameter values and obtain an optimal system of one-dimensional subalgebras and classes of invariant solutions.
Keywords:
inelastic Boltzmann equation, Lie symmetry
Mots-clés : invariant solution, optimal system of subalgebras.
Mots-clés : invariant solution, optimal system of subalgebras.
@article{TMF_2016_186_2_a2,
author = {O. V. Ilyin},
title = {Symmetries and invariant solutions of the~one-dimensional {Boltzmann} equation for inelastic collisions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {221--229},
publisher = {mathdoc},
volume = {186},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a2/}
}
TY - JOUR AU - O. V. Ilyin TI - Symmetries and invariant solutions of the~one-dimensional Boltzmann equation for inelastic collisions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 221 EP - 229 VL - 186 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a2/ LA - ru ID - TMF_2016_186_2_a2 ER -
%0 Journal Article %A O. V. Ilyin %T Symmetries and invariant solutions of the~one-dimensional Boltzmann equation for inelastic collisions %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 221-229 %V 186 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a2/ %G ru %F TMF_2016_186_2_a2
O. V. Ilyin. Symmetries and invariant solutions of the~one-dimensional Boltzmann equation for inelastic collisions. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a2/