Gibbs measures for fertile hard-core models on the Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 340-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study fertile hard-core models with the activity parameter $\lambda>0$ and four states on the Cayley tree. It is known that there are three types of such models. For each of these models, we prove the uniqueness of the translation-invariant Gibbs measure for any value of the parameter $\lambda$ on the Cayley tree of order three. Moreover, for one of the models, we obtain critical values of $\lambda$ at which the translation-invariant Gibbs measure is nonunique on the Cayley tree of order five. In this case, we verify a sufficient condition (the Kesten–Stigum condition) for a measure not to be extreme.
Keywords: Cayley tree, fertile graph, hard-core model, Gibbs measure, translation-invariant measure.
Mots-clés : configuration
@article{TMF_2016_186_2_a11,
     author = {R. M. Khakimov},
     title = {Gibbs measures for fertile hard-core models on {the~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {340--352},
     year = {2016},
     volume = {186},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a11/}
}
TY  - JOUR
AU  - R. M. Khakimov
TI  - Gibbs measures for fertile hard-core models on the Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 340
EP  - 352
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a11/
LA  - ru
ID  - TMF_2016_186_2_a11
ER  - 
%0 Journal Article
%A R. M. Khakimov
%T Gibbs measures for fertile hard-core models on the Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 340-352
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a11/
%G ru
%F TMF_2016_186_2_a11
R. M. Khakimov. Gibbs measures for fertile hard-core models on the Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 340-352. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a11/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[2] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl | Zbl

[4] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR

[5] F. Kelly, Ann. Appl. Probab., 1:3 (1991), 319–378 | DOI | MR | Zbl

[6] A. E. Mazel, Yu. M. Suhov, J. Statist. Phys., 64:1–2 (1991), 111–134 | DOI | MR | Zbl

[7] Yu. M. Suhov, U. A. Rozikov, Queueing Syst., 46:1–2 (2004), 197–212 | DOI | MR | Zbl

[8] U. A. Rozikov, R. M. Khakimov, TMF, 173:1 (2012), 60–70 | DOI | DOI | Zbl

[9] R. M. Khakimov, Matem. zametki, 94:5 (2013), 796–800 | DOI | DOI | MR | Zbl

[10] J. B. Martin, U. A. Rozikov, Yu. M. Suhov, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl

[11] U. A. Rozikov, Sh. A. Shoyusupov, TMF, 156:3 (2008), 412–424 | DOI | DOI | MR | Zbl

[12] R. M. Khakimov, TMF, 183:3 (2015), 441–449, arXiv: 1406.0473 | DOI | DOI | MR | Zbl

[13] G. Brightwell, P. Winkler, J. Combin. Theory B, 77:2 (1999), 221–262 | DOI | MR | Zbl

[14] R. M. Khakimov, Zhurn. SFU. Ser. Matem. i fiz., 8:2 (2015), 165–172 | MR

[15] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | DOI | MR | Zbl

[16] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR | Zbl

[17] H. Kesten, B. P. Stigum, Ann. Math. Statist., 37 (1966), 1463–1481 | DOI | MR | Zbl