Gibbs measures for fertile hard-core models on the~Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 340-352

Voir la notice de l'article provenant de la source Math-Net.Ru

We study fertile hard-core models with the activity parameter $\lambda>0$ and four states on the Cayley tree. It is known that there are three types of such models. For each of these models, we prove the uniqueness of the translation-invariant Gibbs measure for any value of the parameter $\lambda$ on the Cayley tree of order three. Moreover, for one of the models, we obtain critical values of $\lambda$ at which the translation-invariant Gibbs measure is nonunique on the Cayley tree of order five. In this case, we verify a sufficient condition (the Kesten–Stigum condition) for a measure not to be extreme.
Keywords: Cayley tree, fertile graph, hard-core model, Gibbs measure, translation-invariant measure.
Mots-clés : configuration
@article{TMF_2016_186_2_a11,
     author = {R. M. Khakimov},
     title = {Gibbs measures for fertile hard-core models on {the~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {340--352},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a11/}
}
TY  - JOUR
AU  - R. M. Khakimov
TI  - Gibbs measures for fertile hard-core models on the~Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 340
EP  - 352
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a11/
LA  - ru
ID  - TMF_2016_186_2_a11
ER  - 
%0 Journal Article
%A R. M. Khakimov
%T Gibbs measures for fertile hard-core models on the~Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 340-352
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a11/
%G ru
%F TMF_2016_186_2_a11
R. M. Khakimov. Gibbs measures for fertile hard-core models on the~Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 340-352. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a11/