Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 191-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a unified structure of solutions for all equations of the Ablowitz–Kaup–Newell–Segur hierarchy and their combinations. We give examples of solutions that satisfy different equations for different parameter values. In particular, we consider a rank-$2$ quasirational solution that can be used to investigate many integrable models in nonlinear optics. An advantage of our approach is the possibility to investigate changes in the behavior of a solution resulting from changing the model.
Mots-clés : rogue wave, Hirota equation
Keywords: freak wave, nonlinear Schrödinger equation, AKNS hierarchy.
@article{TMF_2016_186_2_a1,
     author = {V. B. Matveev and A. O. Smirnov},
     title = {Solutions of {the~Ablowitz{\textendash}Kaup{\textendash}Newell{\textendash}Segur} hierarchy equations of the~{\textquotedblleft}rogue wave{\textquotedblright} type: {A~unified} approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {191--220},
     year = {2016},
     volume = {186},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a1/}
}
TY  - JOUR
AU  - V. B. Matveev
AU  - A. O. Smirnov
TI  - Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 191
EP  - 220
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a1/
LA  - ru
ID  - TMF_2016_186_2_a1
ER  - 
%0 Journal Article
%A V. B. Matveev
%A A. O. Smirnov
%T Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 191-220
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a1/
%G ru
%F TMF_2016_186_2_a1
V. B. Matveev; A. O. Smirnov. Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 191-220. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a1/

[1] A. R. Its, V. P. Kotlyarov, Dokl. AN USSR. Ser. A, 11 (1976), 965–968 | MR

[2] A. R. Its, Vestn. LGU. Ser. Matem., mekh., astron., 7:2 (1976), 39–46 | Zbl

[3] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometrical Approach to Nonlinear Evolution Equations, Springer, Berlin, 1994 | MR | Zbl

[4] A. O. Smirnov, Matem. sb., 185:8 (1994), 103–114 | DOI | MR | Zbl

[5] A. O. Smirnov, TMF, 107:2 (1996), 188–200 | DOI | DOI | MR | Zbl

[6] A. O. Smirnov, Matem. sb., 188:1 (1997), 109–128 | DOI | DOI | MR | Zbl

[7] A. O. Smirnov, Zap. nauchn. sem. POMI, 398 (2012), 209–222 | DOI | MR

[8] A. O. Smirnov, TMF, 173:1 (2012), 89–103 | DOI | DOI | MR | Zbl

[9] A. O. Smirnov, Matem. zametki, 94:6 (2013), 871–883 | DOI | DOI | MR | Zbl

[10] A. O. Smirnov, G. M. Golovachev, Nelineinaya dinam., 9:3 (2013), 389–407

[11] A. O. Smirnov, E. G. Semenova, V. Zinger, N. Zinger, “On a periodic solution of the focusing nonlinear Schrödinger equation”, arXiv: 1407.7974

[12] A. O. Smirnov, S. G. Matveenko, S. K. Semenov, E. G. Semenova, SIGMA, 11 (2015), 032, 14 pp., arXiv: 1412.1562 | DOI | MR | Zbl

[13] A. R. Its, V. B. Matveev, Zap. nauchn. semin. LOMI, 101 (1981), 64–76 | DOI | MR

[14] A. R. Its, A. V. Rybin, M. A. Sall, TMF, 74:1 (1988), 29–45 | DOI | MR | Zbl

[15] G. L. Alfimov, A. R. Its, N. E. Kulagin, TMF, 84:2 (1990), 163–172 | DOI | MR | Zbl

[16] M. Lakshmanan, K. Porsezian, M. Daniel, Phys. Lett. A, 133:9 (1988), 483–488 | DOI

[17] K. Porsezian, M. Daniel, M. Lakshmanan, J. Math. Phys., 33:5 (1992), 1807–1816 | DOI | MR | Zbl

[18] M. Daniel, K. Porsezian, M. Lakshmanan, Phys. Lett. A, 174:3 (1993), 237–240 | DOI | MR

[19] R. Hirota, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR | Zbl

[20] C. Q. Dai, J. F. Zhang, J. Phys. A, 39:4 (2006), 723–737 | DOI | MR | Zbl

[21] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR

[22] L. Li, Z. Wu, L. Wang, J. He, Ann. Phys., 334 (2013), 198–211, arXiv: 1304.7164 | DOI | MR | Zbl

[23] C. Z. Li, J. S. He, K. Porsezian, Phys. Rev. E, 87:1 (2013), 012913, 13 pp. | DOI

[24] L. H. Wang, K. Porsezian, J. S. He, Phys. Rev. E, 87:5 (2013), 053202, 10 pp., arXiv: 1304.8085 | DOI

[25] A. Ankiewicz, N. Akhmediev, Phys. Lett. A, 378:4 (2014), 358–361 | DOI | MR

[26] A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E, 91:2 (2015), 022919, 11 pp. | DOI | MR

[27] A. Kundu, A. Mukherjee, T. Naskar, Proc. R. Soc. London A, 470:2164 (2014), 20130576, 20 pp. | DOI | MR

[28] G. P. Leclert, C. F. F. Karney, A. Bers, D. J. Kaup, Phys. Fluids, 22 (1979), 1545–1553 | DOI | Zbl

[29] X. Jukui, L. He, Phys. Plasmas, 10:2 (2003), 339–342 | DOI

[30] R. Sabry, S. K. El-Labany, P. K. Shukla, Phys. Plasmas, 15:12 (2008), 122310, 8 pp. | DOI

[31] R. Sabry, W. M. Moslem, P. K. Shukla, H. Saleem, Phys. Rev. E, 79:5 (2009), 056402, 6 pp. | DOI

[32] R. Sabry, W. M. Moslem, P. K. Shukla, Eur. Phys. J. D, 51:2 (2009), 233–240 | DOI

[33] R. Fedele, S. De Nicola, D. Jovanović, D. Grecu, A. Visinescu, J. Plasma Phys., 76:3–4 (2010), 645–653 | DOI

[34] A. T. Grecu, S. De Nicola, R. Fedele, D. Grecu, A. Visinescu, AIP Conf. Proc., 1203:1 (2010), 1239–1244 | DOI

[35] R. Fedele, A. Mannan, F. Tanjia, S. De Nicola, D. Jovanović, L. Gianfrani, J. Plasma Phys., 79:4 (2013), 443–446 | DOI

[36] P. Dubard, P. Gaillard, C. Klein, V. B. Matveev, Eur. Phys. J. Spec. Top., 185:1 (2010), 247–261 | DOI

[37] P. Dubard, Multi-rogue solutions to the focusing NLS equation, Ph. D. Thesis, Université de Bourgogne, Dijon, France, 2010 https://tel.archives-ouvertes.fr/tel-00625446/document

[38] P. Dubard, V. B. Matveev, Nat. Hazards Earth Syst. Sci., 11:3 (2011), 667–672 | DOI

[39] P. Dubard, V. B. Matveev, Nonlinearity, 26:12 (2013), R93–R125 | DOI | MR | Zbl

[40] V. B. Matveev, F. Dyubard, A. O. Smirnov, Nelineinaya dinam., 11:2 (2015), 219–240 | Zbl

[41] B. Konopelchenko, J. Sidorenko, W. Strampp, Phys. Lett. A, 157:1 (1991), 17–21 | DOI | MR

[42] Y. Cheng, Y.-S. Li, Phys. Lett. A, 157:1 (1991), 22–26 | DOI | MR

[43] R. S. Johnson, J. Fluid Mech., 97:4 (1980), 701–719 | DOI | MR | Zbl

[44] V. D. Lipovskii, V. B. Matveev, A. O. Smirnov, Zap. nauchn. semin. LOMI, 150 (1986), 70–75 | MR

[45] K. Klein, V. B. Matveev, A. O. Smirnov, TMF, 152:2 (2007), 304–320 | DOI | DOI | MR | Zbl

[46] K. R. Khusnutdinova, C. Klein, V. B. Matveev, A. O. Smirnov, Chaos, 23:1 (2013), 013126, 13 pp. | DOI | MR | Zbl

[47] V. M. Eleonskii, I. M. Krichever, N. E. Kulagin, Dokl. AN SSSR, 287:3 (1986), 606–610 | MR

[48] D. H. Peregrine, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR | Zbl

[49] A. R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform, International Geophysics Series, 97, Academic Press, Boston, MA, 2010 | MR | Zbl

[50] E. A. Kuznetsov, Dokl. AN SSSR, 236:1–3 (1977), 575–577

[51] Y.-C. Ma, Stud. Appl. Math., 60:1 (1979), 43–58 | DOI | MR

[52] N. N. Akhmediev, V. I. Korneev, TMF, 69:2 (1986), 189–194 | DOI | MR | Zbl

[53] M. Tajiri, Y. Watanabe, Phys. Rev. E, 57:3 (1998), 3510–3519 | DOI | MR

[54] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR