Generalization of the Landau submerged jet solution
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 181-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of exact solutions of the hydrodynamic equations generalizing the Landau submerged jet solution. The obtained solutions do not vanish with the disappearance of viscosity and describe nonzero output or nonzero absorption of fluid mass from the respective sources or sinks located on one axis.
Keywords: submerged jet, one-dimensional incompressible fluid source, one-dimensional incompressible fluid sink.
@article{TMF_2016_186_2_a0,
     author = {S. Artychev},
     title = {Generalization of {the~Landau} submerged jet solution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {181--190},
     year = {2016},
     volume = {186},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a0/}
}
TY  - JOUR
AU  - S. Artychev
TI  - Generalization of the Landau submerged jet solution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 181
EP  - 190
VL  - 186
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a0/
LA  - ru
ID  - TMF_2016_186_2_a0
ER  - 
%0 Journal Article
%A S. Artychev
%T Generalization of the Landau submerged jet solution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 181-190
%V 186
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a0/
%G ru
%F TMF_2016_186_2_a0
S. Artychev. Generalization of the Landau submerged jet solution. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 181-190. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a0/

[1] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 6, Gidrodinamika, Nauka, M., 1986 | MR | MR

[2] G. I. Broman, O. V. Rudenko, UFN, 180:1 (2010), 97–104 | DOI | DOI

[3] A. N. Varchenko, P. I. Etingof, Pochemu granitsa krugloi kapli prevraschaetsya v inversnyi obraz ellipsa, Nauka, M., 1995 | MR | MR | Zbl | Zbl

[4] V. V. Pukhnachev, Uspekhi mekhaniki, 4:1 (2006), 6–76

[5] V. V. Pukhnachev, “Singular solutions of Navier–Stokes equations”, Proceedings of the St. Petersburg Mathematical Society (Stockholm, Sweden, July 9–13, 2012), v. XV, American Mathematical Society Translations. Ser. 2, 232, Advances in Mathematical Analysis of Partial Differential Equations, AMS, Providence, RI, 2014, 193–217 | MR | Zbl

[6] N. A. Slezkin, Uch. zapiski Mosk. gos. un-ta, 2 (1934), 89–90

[7] V. I. Yatseev, ZhETF, 20:11 (1950), 1031–1034

[8] V. O. Shverak, Problemy matematicheskogo analiza, 61 (2011), 173–191

[9] S. N. Aristov, Izv. RAN. Mekhanika zhidkosti i gaza, 1998, no. 6, 144–148 | DOI | MR | Zbl

[10] S. G. Artyshev, Vestn. MIFI, 2:1 (2013), 1–5 | DOI

[11] S. G. Artyshev, PMM, 79:2 (2015), 236–241 | DOI | MR | Zbl

[12] A. V. Yurov, A .A. Yurova, TMF, 147:1 (2006), 64–72 | DOI | DOI | MR | Zbl

[13] Y. Li, A. Yurov, Stud. Appl. Math., 111:1 (2003), 101–113 | DOI | MR | Zbl