@article{TMF_2016_186_2_a0,
author = {S. Artychev},
title = {Generalization of {the~Landau} submerged jet solution},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {181--190},
year = {2016},
volume = {186},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a0/}
}
S. Artychev. Generalization of the Landau submerged jet solution. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 2, pp. 181-190. http://geodesic.mathdoc.fr/item/TMF_2016_186_2_a0/
[1] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 6, Gidrodinamika, Nauka, M., 1986 | MR | MR
[2] G. I. Broman, O. V. Rudenko, UFN, 180:1 (2010), 97–104 | DOI | DOI
[3] A. N. Varchenko, P. I. Etingof, Pochemu granitsa krugloi kapli prevraschaetsya v inversnyi obraz ellipsa, Nauka, M., 1995 | MR | MR | Zbl | Zbl
[4] V. V. Pukhnachev, Uspekhi mekhaniki, 4:1 (2006), 6–76
[5] V. V. Pukhnachev, “Singular solutions of Navier–Stokes equations”, Proceedings of the St. Petersburg Mathematical Society (Stockholm, Sweden, July 9–13, 2012), v. XV, American Mathematical Society Translations. Ser. 2, 232, Advances in Mathematical Analysis of Partial Differential Equations, AMS, Providence, RI, 2014, 193–217 | MR | Zbl
[6] N. A. Slezkin, Uch. zapiski Mosk. gos. un-ta, 2 (1934), 89–90
[7] V. I. Yatseev, ZhETF, 20:11 (1950), 1031–1034
[8] V. O. Shverak, Problemy matematicheskogo analiza, 61 (2011), 173–191
[9] S. N. Aristov, Izv. RAN. Mekhanika zhidkosti i gaza, 1998, no. 6, 144–148 | DOI | MR | Zbl
[10] S. G. Artyshev, Vestn. MIFI, 2:1 (2013), 1–5 | DOI
[11] S. G. Artyshev, PMM, 79:2 (2015), 236–241 | DOI | MR | Zbl
[12] A. V. Yurov, A .A. Yurova, TMF, 147:1 (2006), 64–72 | DOI | DOI | MR | Zbl
[13] Y. Li, A. Yurov, Stud. Appl. Math., 111:1 (2003), 101–113 | DOI | MR | Zbl