Keywords: deformed Heun-class equation
@article{TMF_2016_186_1_a8,
author = {S. Yu. Slavyanov and O. L. Stesik},
title = {Antiquantization of deformed {Heun-class} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {142--151},
year = {2016},
volume = {186},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a8/}
}
S. Yu. Slavyanov; O. L. Stesik. Antiquantization of deformed Heun-class equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 142-151. http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a8/
[1] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii Dialekt, SPb., 2002 | MR | Zbl
[2] S. Yu. Slavyanov, J. Phys. A: Math. Gen., 29:22 (1996), 7329–7335 | DOI | MR | Zbl
[3] S. Yu. Slavyanov, “Kovalevskaya's dynamics and Schrödinger equations of Heun class”, Operator Methods in Ordinary and Partial Differential Equations (Stockholm, Sweden, June 2000), Operator Theory: Advances and Applications, 132, eds. S. Albeverio, N. Elander, W. N. Everitt, P. Kurasov, Birkhäuser, Basel, 2002, 395–402 | MR | Zbl
[4] S. Yu. Slavyanov, TMF, 123:3 (2000), 395–406 | DOI | DOI | MR | Zbl
[5] A. R. Its, V. Y. Novokshenov, The Isomodromic Deformation Method in the Theory of the Penlevé Equations, Lecture Notes in Mathematics, 1191, Berlin, 1986 | DOI | MR | Zbl