Superalgebraic representation of Dirac matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 87-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Clifford extension of the Grassmann algebra in which operators are constructed from products of Grassmann variables and derivatives with respect to them. We show that this algebra contains a subalgebra isomorphic to a matrix algebra and that it additionally contains operators of a generalized matrix algebra that mix states with different numbers of Grassmann variables. We show that these operators are extensions of spin-tensors to the case of superspace. We construct a representation of Dirac matrices in the form of operators of a generalized matrix algebra.
Keywords: Grassmann algebra, Clifford algebra, quantum field theory, generalized matrix algebra, spinor, superspace, supersymmetry.
Mots-clés : Dirac matrix
@article{TMF_2016_186_1_a4,
     author = {V. V. Monakhov},
     title = {Superalgebraic representation of {Dirac} matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {87--100},
     year = {2016},
     volume = {186},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a4/}
}
TY  - JOUR
AU  - V. V. Monakhov
TI  - Superalgebraic representation of Dirac matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 87
EP  - 100
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a4/
LA  - ru
ID  - TMF_2016_186_1_a4
ER  - 
%0 Journal Article
%A V. V. Monakhov
%T Superalgebraic representation of Dirac matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 87-100
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a4/
%G ru
%F TMF_2016_186_1_a4
V. V. Monakhov. Superalgebraic representation of Dirac matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a4/

[1] P. K. Rashevskii, 10, no. 2(64), 1955, 3–110 | MR | Zbl

[2] Yu. A. Yappa, Vvedenie v teoriyu spinorov i ee prilozheniya v fizike, Izd-vo S.-Peterburg. un-ta, SPb., 2004

[3] S. Okubo, J. Math. Phys., 32:7 (1991), 1657–1668 | DOI | MR | Zbl

[4] H. L. Carrion, M. Rojas, F. Toppan, JHEP, 04 (2003), 040, 28 pp. | DOI | MR

[5] D. S. Shirokov, Lektsii po algebram Klifforda i spinoram, Lektsionnye kursy NOTs, no. 19, MIAN, M., 2012 | DOI | Zbl

[6] E. Kartan, Teoriya spinorov, Platon, Volgograd, 1997

[7] R. Penrouz, V. Rindler, Spinory i prostranstvo-vremya, v. 1, Dva-spinornoe ischislenie i relyativistskie polya, Mir, M., 1987 | MR | MR | Zbl

[8] F. A. Berezin, Vvedenie v superanaliz, MTsNMO, M., 2013 | DOI | MR

[9] L. E. Gendenshtein, I. V. Krive, UFN, 146:4 (1985), 553–590 | DOI | DOI | MR

[10] V. I. Ogievetskii, L. Mezinchesku, UFN, 117:4 (1975), 637–683 | DOI | DOI | MR

[11] Yu. Vess, Dzh. Begger, Supersimmetriya i supergravitatsiya, Mir, M., 1986 | MR | MR | Zbl

[12] P. Uest, Vvedenie v supersimmetriyu i supergravitatsiyu, Mir, M., 1989 | MR