Dissipative and nonunitary solutions of operator commutation relations
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 51-75

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the (generalized) semi-Weyl commutation relations $U_gAU_g^*=g(A)$ on $\operatorname{Dom}(A)$, where $A$ is a densely defined operator and $G\ni g\mapsto U_g$ is a unitary representation of the subgroup $G$ of the affine group $\mathcal G$, the group of affine orientation-preserving transformations of the real axis. If $A$ is a symmetric operator, then the group $G$ induces an action/flow on the operator unit ball of contracting transformations from $\operatorname{Ker}(A^*-iI)$ to $\operatorname{Ker}(A^*+iI)$. We establish several fixed-point theorems for this flow. In the case of one-parameter continuous subgroups of linear transformations, self-adjoint (maximal dissipative) operators associated with the fixed points of the flow yield solutions of the (restricted) generalized Weyl commutation relations. We show that in the dissipative setting, the restricted Weyl relations admit a variety of representations that are not unitarily equivalent. For deficiency indices $(1,1)$, the basic results can be strengthened and set in a separate case.
Keywords: Weyl commutation relation, deficiency index, self-adjoint extension.
Mots-clés : affine group
@article{TMF_2016_186_1_a2,
     author = {K. A. Makarov and \`E. R. Tsekanovskii},
     title = {Dissipative and nonunitary solutions of operator commutation relations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {51--75},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a2/}
}
TY  - JOUR
AU  - K. A. Makarov
AU  - È. R. Tsekanovskii
TI  - Dissipative and nonunitary solutions of operator commutation relations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 51
EP  - 75
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a2/
LA  - ru
ID  - TMF_2016_186_1_a2
ER  - 
%0 Journal Article
%A K. A. Makarov
%A È. R. Tsekanovskii
%T Dissipative and nonunitary solutions of operator commutation relations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 51-75
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a2/
%G ru
%F TMF_2016_186_1_a2
K. A. Makarov; È. R. Tsekanovskii. Dissipative and nonunitary solutions of operator commutation relations. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 51-75. http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a2/