Dissipative and nonunitary solutions of operator commutation relations
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 51-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the (generalized) semi-Weyl commutation relations $U_gAU_g^*=g(A)$ on $\operatorname{Dom}(A)$, where $A$ is a densely defined operator and $G\ni g\mapsto U_g$ is a unitary representation of the subgroup $G$ of the affine group $\mathcal G$, the group of affine orientation-preserving transformations of the real axis. If $A$ is a symmetric operator, then the group $G$ induces an action/flow on the operator unit ball of contracting transformations from $\operatorname{Ker}(A^*-iI)$ to $\operatorname{Ker}(A^*+iI)$. We establish several fixed-point theorems for this flow. In the case of one-parameter continuous subgroups of linear transformations, self-adjoint (maximal dissipative) operators associated with the fixed points of the flow yield solutions of the (restricted) generalized Weyl commutation relations. We show that in the dissipative setting, the restricted Weyl relations admit a variety of representations that are not unitarily equivalent. For deficiency indices $(1,1)$, the basic results can be strengthened and set in a separate case.
Keywords: Weyl commutation relation, deficiency index, self-adjoint extension.
Mots-clés : affine group
@article{TMF_2016_186_1_a2,
     author = {K. A. Makarov and \`E. R. Tsekanovskii},
     title = {Dissipative and nonunitary solutions of operator commutation relations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {51--75},
     year = {2016},
     volume = {186},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a2/}
}
TY  - JOUR
AU  - K. A. Makarov
AU  - È. R. Tsekanovskii
TI  - Dissipative and nonunitary solutions of operator commutation relations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 51
EP  - 75
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a2/
LA  - ru
ID  - TMF_2016_186_1_a2
ER  - 
%0 Journal Article
%A K. A. Makarov
%A È. R. Tsekanovskii
%T Dissipative and nonunitary solutions of operator commutation relations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 51-75
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a2/
%G ru
%F TMF_2016_186_1_a2
K. A. Makarov; È. R. Tsekanovskii. Dissipative and nonunitary solutions of operator commutation relations. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 51-75. http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a2/

[1] G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Interscience Monographs and Texts in Physics and Astronomy, XXVI, Wiley $\$ Sons, New York, 1972 | Zbl

[2] P. D. Lax, R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, 26, Academic Press, Boston, MA, 1989 | MR | Zbl

[3] G. Weyl, Z. Phys., 46:1 (1928), 1–46 | DOI

[4] J. von Neumann, Math. Ann., 104:1 (1931), 570–578 | DOI | MR | Zbl

[5] M. Stone, Ann. Math., 33:3 (1932), 643–648 | DOI | MR | Zbl

[6] V. A. Zolotarev, Matem. sb., 183:5 (1992), 115–144 | MR | Zbl

[7] V. K. Dubovoi, “Veilevskie semeistva operatornykh uzlov i sootvetstvuyuschie im otkrytye polya”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, v. 14, KhGU, Kharkov, 1971, 67–83 | MR

[8] M. S. Livshits, A. A. Yantsevich, Teoriya operatornykh uzlov v gilbertovykh prostranstvakh, KhGU, Kharkov, 1971 | MR

[9] A. P. Filimonov, E. R. Tsekanovskii, Funkts. analiz i ego pril., 21:4 (1987), 94–95 | DOI | MR | Zbl

[10] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Fizmatlit, M., 1989 | MR

[11] V. Efimov, Phys. Lett. B, 33:8 (1970), 563–564 | DOI

[12] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | Zbl

[13] R. A. Minlos, L. D. Faddeev, Dokl. AN SSSR, 141:6 (1961), 1335–1338 | MR

[14] K. A. Makarov, V. V. Melezhik, TMF, 107:3 (1996), 415–432 | DOI | DOI | MR | Zbl

[15] S. Leng, $\mathrm{SL}_2(\mathbb{R})$, Mir, M., 1977 | MR | MR | Zbl

[16] G. W. Mackey, Duke Math. J., 16:2 (1949), 313–326 | DOI | MR | Zbl

[17] M. S. Brodskii, M. S. Livshits, Dokl. AN SSSR, 68 (1949), 213–216

[18] P. E. T. Jorgensen, Bull. Amer. Math. Soc. (N. S.), 1:1 (1979), 266–269 | DOI | MR | Zbl

[19] P. E. T. Jorgensen, Math. Z., 169:1 (1979), 41–62 | DOI | MR | Zbl

[20] P. E. T. Jorgensen, P. S. Muhly, J. Analyse Math., 37 (1980), 46–99 | DOI | MR | Zbl

[21] P. E. T. Jorgensen, J. Math. Anal. Appl., 73:1 (1980), 115–133 | DOI | MR | Zbl

[22] P. E. T. Jorgensen, Amer. J. Math., 103:2 (1981), 273–287 | DOI | MR | Zbl

[23] P. E. T. Jorgensen, R. T. Moore, Operator Commutation Relations, Mathematics and Its Applications, 14, D. Reidel, Dordrecht, 1984 | DOI | MR

[24] K. Schmüdgen, J. Funct. Anal., 50:1 (1983), 8–49 | DOI | MR

[25] K. Schmüdgen, Publ. Res. Inst. Math. Sci., 19:2 (1983), 601–671 | DOI | MR | Zbl

[26] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[27] E. R. Tsekanovskii, Yu. L. Shmulyan, TMF, 32:5(197) (1977), 69–124 | DOI | MR | Zbl

[28] M. S. Livshits, Matem. sb., 19(61):2 (1946), 239–262 | MR | Zbl

[29] Yu. Arlinskii, S. Belyi, E. Tsekanovskii, Conservative Realizations of Herglotz–Nevanlinna Functions, Operator Theory: Advances and Applications, 217, Birkhäuser, Basel, 2011 | DOI | MR | Zbl

[30] K. A. Makarov, E. Tsekanovskii, Methods Func. Anal. Topology, 13:2 (2007), 181–186 | MR | Zbl

[31] M. G. Krein, Matem. sb., 20(62):3 (1947), 431–495 | MR | Zbl

[32] T. Ando, K. Nishio, Tôhoku Math. J., 22:1 (1970), 65–75 | MR | Zbl

[33] L. A. Lyusternik, V. I. Sobolev, Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR | MR | Zbl

[34] Dzh. U. Vik, Teoriya gomologii. Vvedenie v algebraicheskuyu topologiyu, MTsNMO, M., 2005 | DOI

[35] L. E. J. Brouwer, Mathematische Annalen, 71:3 (1912), 305–315 | DOI | MR

[36] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | MR

[37] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. II, Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR | MR | Zbl

[38] A. M. Perelomov, Y. B. Zel'dovich, Quantum Mechanics. Selected Topics, World Sci., Singapore, 1998 | MR | Zbl

[39] A. M. Perelomov, V. S. Popov, TMF, 4:1 (1970), 48–65 | DOI

[40] W. N. Everitt, H. Kalf, J. Comp. Appl. Math., 208:1 (2007), 3–19 | DOI | MR | Zbl

[41] F. Gesztesy, L. Pittner, Acta Phys. Austriaca, 51:3–4 (1979), 259–268 | MR

[42] H. Kalf, J. London Math. Soc., 17 (1978), 511–521 | DOI | MR | Zbl