Asymptotic behavior of the wave function of a system of several particles with pair interactions increasing at infinity
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 164-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an asymptotic representation of the wave functions of systems of two and three quantum particles with pair interactions increasing at infinity. We consider three-particle systems on the line and in the three-dimensional space. The eikonal and transport equations used to construct the asymptotic representation differ significantly from the corresponding equations in the case of decreasing potentials. We study the solution of the nonlinear eikonal equation in detail.
Mots-clés : confinement, eikonal equation
Keywords: asymptotic behavior of wave function.
@article{TMF_2016_186_1_a10,
     author = {E. A. Yarevskii},
     title = {Asymptotic behavior of the~wave function of a~system of several particles with pair interactions increasing at infinity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {164--176},
     year = {2016},
     volume = {186},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a10/}
}
TY  - JOUR
AU  - E. A. Yarevskii
TI  - Asymptotic behavior of the wave function of a system of several particles with pair interactions increasing at infinity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 164
EP  - 176
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a10/
LA  - ru
ID  - TMF_2016_186_1_a10
ER  - 
%0 Journal Article
%A E. A. Yarevskii
%T Asymptotic behavior of the wave function of a system of several particles with pair interactions increasing at infinity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 164-176
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a10/
%G ru
%F TMF_2016_186_1_a10
E. A. Yarevskii. Asymptotic behavior of the wave function of a system of several particles with pair interactions increasing at infinity. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 164-176. http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a10/

[1] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | Zbl

[2] S. P. Merkurev, TMF, 32:2 (1977), 187–207 | DOI | MR

[3] A. A. Kvitsinskii, Yu. A. Kuperin, S. P. Merkurev, A. K. Motovilov, S. L. Yakovlev, EChAYa, 17:2 (1986), 267–317 | MR

[4] Yu. A. Kuperin, A. A. Kvitsinsky, S. P. Merkuriev, E. A. Yarevsky, Nucl. Phys. A, 523:3 (1991), 614–628 | DOI

[5] S. M. Gerasyuta, Yu. A. Kuperin, A. V. Sarantsev, E. A. Yarevskii, YaF, 53:5 (1991), 1397–1401

[6] B. Silvestre-Brac, Few-Body Syst., 20:1 (1996), 1–25 ; B. Silvestre-Brac, C. Gignoux, Phys. Rev. D, 32:3 (1985), 743–754 | DOI | DOI

[7] W. Paul, Rev. Modern Phys., 62:3 (1990), 531–540 | DOI

[8] W. Li, L. E. Reichl, Phys. Rev. B, 62:12 (2000), 8269– 8275 | DOI

[9] Y. Chargui, A. Dhahbi, L. Chetouani, A. Trabelsi, Few-Body Syst., 55:12 (2014), 1233–1243 | DOI

[10] J. L. Friar, B. F. Gibson, G. L. Payne, Phys. Rev. C, 22:1 (1980), 284–286 | DOI | MR

[11] Yu. A. Kuperin, S. P. Merkuriev, E. A. Yarevsky, J. Math. Phys., 32:1 (1991), 153–156 | DOI | MR | Zbl

[12] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR | MR

[13] F. Lenz, J. T. Londergan, E. J. Moniz, R. Rosenfelder, M. Stingl, K. Yazaki, Ann. Phys., 170:1 (1986), 65–254 | DOI

[14] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl | Zbl

[15] A. A. Kvitsinsky, V. V. Kostrykin, J. Math. Phys., 32:10 (1991), 2802–2812 | DOI | MR