Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 5-26

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of nonlinear supersymmetry algebras realized in the one-dimensional quantum mechanics of matrix systems. Supercharges of these algebras are differential operators of a finite order in derivatives. In special cases, there exist independent supercharges realizing an (extended) supersymmetry of the same super-Hamiltonian. The extended supersymmetry generates hidden symmetries of the super-Hamiltonian. Such symmetries have been found in models with $(2{\times}2)$-matrix potentials.
Keywords: matrix Hamiltonian, extended supersymmetry algebra, hidden symmetry.
@article{TMF_2016_186_1_a0,
     author = {A. A. Andrianov and A. V. Sokolov},
     title = {Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a0/}
}
TY  - JOUR
AU  - A. A. Andrianov
AU  - A. V. Sokolov
TI  - Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 5
EP  - 26
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a0/
LA  - ru
ID  - TMF_2016_186_1_a0
ER  - 
%0 Journal Article
%A A. A. Andrianov
%A A. V. Sokolov
%T Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 5-26
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a0/
%G ru
%F TMF_2016_186_1_a0
A. A. Andrianov; A. V. Sokolov. Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 5-26. http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a0/