Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 5-26
Voir la notice de l'article provenant de la source Math-Net.Ru
We study properties of nonlinear supersymmetry algebras realized in the one-dimensional quantum mechanics of matrix systems. Supercharges of these algebras are differential operators of a finite order in derivatives. In special cases, there exist independent supercharges realizing an (extended) supersymmetry of the same super-Hamiltonian. The extended supersymmetry generates hidden symmetries of the super-Hamiltonian. Such symmetries have been found in models with $(2{\times}2)$-matrix potentials.
Keywords:
matrix Hamiltonian, extended supersymmetry algebra, hidden symmetry.
@article{TMF_2016_186_1_a0,
author = {A. A. Andrianov and A. V. Sokolov},
title = {Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {5--26},
publisher = {mathdoc},
volume = {186},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a0/}
}
TY - JOUR AU - A. A. Andrianov AU - A. V. Sokolov TI - Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 5 EP - 26 VL - 186 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a0/ LA - ru ID - TMF_2016_186_1_a0 ER -
%0 Journal Article %A A. A. Andrianov %A A. V. Sokolov %T Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 5-26 %V 186 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a0/ %G ru %F TMF_2016_186_1_a0
A. A. Andrianov; A. V. Sokolov. Extended supersymmetry and hidden symmetries in one-dimensional matrix quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 5-26. http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a0/