Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 527-544 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on $\mathbb Z$-gradings of semisimple Lie algebras and invariant polynomials on them, we construct hierarchies of Lax equations with a spectral parameter on a Riemann surface and prove the commutativity of the corresponding flows.
Keywords: Lax operator algebra, hierarchy, semisimple Lie algebra, Riemann surface.
Mots-clés : Lax equation
@article{TMF_2015_185_3_a8,
     author = {O. K. Sheinman},
     title = {Hierarchies of finite-dimensional {Lax} equations with a~spectral parameter on {a~Riemann} surface and semisimple {Lie} algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {527--544},
     year = {2015},
     volume = {185},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a8/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 527
EP  - 544
VL  - 185
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a8/
LA  - ru
ID  - TMF_2015_185_3_a8
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 527-544
%V 185
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a8/
%G ru
%F TMF_2015_185_3_a8
O. K. Sheinman. Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 527-544. http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a8/

[1] I. M. Krichever, Commun. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl

[2] I. M. Krichever, S. P. Novikov, UMN, 35:6(216) (1980), 47–68 | DOI | MR | Zbl

[3] I. M. Krichever, O. K. Sheinman, Funkts. analiz i ego prilozh., 41:4 (2007), 46–59, arXiv: math.RT/0701648 | DOI | DOI | MR | Zbl

[4] A. N. Tyurin, Izv. AN SSSR. Ser. matem., 29:3 (1965), 657–688 | MR | Zbl

[5] O. K. Sheinman, Current algebras on Riemann surfaces, De Gruyter Expositions in Mathematics, 58, Walter de Gruyter, Berlin, Boston, 2012 | MR

[6] O. K. Sheinman, Dokl. RAN, 455:1 (2014), 23–25, arXiv: 1304.2510 | DOI | MR | Zbl

[7] M. Shlikhenmaier, O. K. Sheinman, UMN, 63:4(382) (2008), 131–172, arXiv: 0711.4688 | DOI | DOI | MR | Zbl

[8] M. Shlikhenmaier, Matem. sb., 205:5 (2014), 117–160, arXiv: 1304.3902 | DOI | DOI | MR | Zbl

[9] E. B. Vinberg, chastnoe soobschenie, 2014

[10] O. K. Sheinman, “Lax operator algebras and gradings on semi-simple Lie algebras”, Transformation Groups, 2015, 16 pp., DOI: 10.1007/s00031-015-9340-y ; arXiv: 1406.5017 | DOI | MR

[11] O. K. Sheinman, Dokl. RAN, 461:2 (2015), 143–145 | DOI | DOI | Zbl

[12] E. B. Vinberg, V. V. Gorbatsevich, A. L. Onischik, “Stroenie grupp i algebr Li”, Gruppy Li i algebry Li – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 41, VINITI, M., 2003, 5–258 | MR | Zbl

[13] W. M. Goldman, Invent. Math., 85:2 (1986), 263–302 | DOI | MR | Zbl

[14] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, IKI, M., Izhevsk, 2003

[15] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR

[16] I. M. Krichever, Funkts. analiz i ego prilozh., 14:4 (1980), 45–54 | DOI | MR | Zbl

[17] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, Characteristic classes and integrable systems for simple Lie groups, arXiv: 1007.4127