Bilinear equations for the strict KP hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 512-526 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe two modules for the algebra $P\!sd$ of pseudodifferential operators; for each of them, we define an associated system from which the Lax equations of the strict KP hierarchy can be obtained as compatibility conditions. We construct a set of bilinear equations on these modules that characterizes solutions of the strict KP hierarchy that are obtained by dressing the basic generator of $P\!sd$.
Keywords: integrable deformation, pseudodifferential operator, strict KP hierarchy, dual wave function, bilinear form.
Mots-clés : compatible Lax equation
@article{TMF_2015_185_3_a7,
     author = {G. F. Helminck and E. A. Panasenko and S. V. Polenkova},
     title = {Bilinear equations for the~strict {KP} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {512--526},
     year = {2015},
     volume = {185},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a7/}
}
TY  - JOUR
AU  - G. F. Helminck
AU  - E. A. Panasenko
AU  - S. V. Polenkova
TI  - Bilinear equations for the strict KP hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 512
EP  - 526
VL  - 185
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a7/
LA  - ru
ID  - TMF_2015_185_3_a7
ER  - 
%0 Journal Article
%A G. F. Helminck
%A E. A. Panasenko
%A S. V. Polenkova
%T Bilinear equations for the strict KP hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 512-526
%V 185
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a7/
%G ru
%F TMF_2015_185_3_a7
G. F. Helminck; E. A. Panasenko; S. V. Polenkova. Bilinear equations for the strict KP hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 512-526. http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a7/

[1] R. Hirota, “Direct method of finding exact solutions of nonlinear evolution equations”, Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications, Lecture Notes in Mathematics, 515, ed. R. M. Miura, 1976, 40–68 | DOI | MR | Zbl

[2] M. Sato, Y. Mori, RIMS Kokyuroku, 388 (1980), 183; M. Sato, Y. Sato, RIMS Kokyuroku, 414 (1981), 181

[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, 13–16 May, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl

[4] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR

[5] G. F. Khelmink, A. G. Khelmink, E. A. Panasenko, TMF, 174:1 (2013), 154–176 | DOI | DOI | MR | Zbl

[6] G. F. Helminck, A. G. Helminck, E. A. Panasenko, J. Geom. Phys., 85 (2014), 196–205 | DOI | MR | Zbl

[7] G. F. Helminck, G. F. Post, Lett. Math. Phys., 16:4 (1988), 359–364 | DOI | MR | Zbl

[8] G. Segal, G. Wilson, Publ. Math. Inst. Hautes Étud. Sci., 61 (1985), 5–65 | DOI | MR | Zbl