Cluster characters and the combinatorics of Toda systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 495-511 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We survey some connections between Toda systems and cluster algebras. One of these connections is based on representation theory{:} it is known that Laurent expansions of cluster variables are generating functions of Euler characteristics of quiver Grassmannians, and the same turns out to be true of the Hamiltonians of the open relativistic Toda chain. Another connection is geometric{\rm:} the closed nonrelativistic Toda chain can be regarded as a meromorphic Hitchin system and studied from the standpoint of spectral networks. From this standpoint, the combinatorial formulas for the Hamiltonians of the open relativistic system are sums of trajectories of differential equations defined by the closed nonrelativistic spectral curves.
Keywords: cluster algebra, integrable system, representation theory of algebras.
@article{TMF_2015_185_3_a6,
     author = {H. Williams},
     title = {Cluster characters and the~combinatorics of {Toda} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {495--511},
     year = {2015},
     volume = {185},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a6/}
}
TY  - JOUR
AU  - H. Williams
TI  - Cluster characters and the combinatorics of Toda systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 495
EP  - 511
VL  - 185
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a6/
LA  - ru
ID  - TMF_2015_185_3_a6
ER  - 
%0 Journal Article
%A H. Williams
%T Cluster characters and the combinatorics of Toda systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 495-511
%V 185
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a6/
%G ru
%F TMF_2015_185_3_a6
H. Williams. Cluster characters and the combinatorics of Toda systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 495-511. http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a6/

[1] S. Fomin, A. Zelevinsky, J. Amer. Math. Soc., 15:2 (2002), 497–529 | DOI | MR | Zbl

[2] P. Caldero, F. Chapoton, Comment. Math. Helv., 81:3 (2006), 595–616 | DOI | MR | Zbl

[3] B. Keller, “Cluster algebras and derived categories”, Derived Categories in Algebraic Geometry, Eur. Math. Soc., Zurich, 2012, 123–183 | MR | Zbl

[4] V. V. Fock, A. B. Goncharov, Publ. Math. Inst. Hautes Etudes Sci., 103 (2006), 1–211 | DOI | MR | Zbl

[5] G. Musiker, R. Schiffler, L. Williams, Compos. Math., 149:2 (2013), 217–263 | DOI | MR | Zbl

[6] H. Williams, Toda systems, cluster characters, and spectral networks, arXiv: 1411.3692 | MR

[7] T. Brustle, J. Zhang, Algebra Number Theory, 5:4 (2011), 529–566 | DOI | MR | Zbl

[8] M. Gekhtman, M. Shapiro, A. Vainshtein, Acta Math., 206:2 (2011), 245–310 | DOI | MR | Zbl

[9] R. Kedem, J. Phys. A, 41:19 (2008), 194011, 14 pp. | DOI | MR | Zbl

[10] P. Di Francesco, R. Kedem, Lett. Math. Phys., 89:3 (2009), 183–216 | DOI | MR | Zbl

[11] E. Martinec, N. Warner, Nucl. Phys. B, 459:1–2 (1996), 97–112, arXiv: hep-th/9509161 | DOI | MR | Zbl

[12] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355:3–4 (1995), 466–474, arXiv: hep-th/9505035 | DOI | MR | Zbl

[13] D. Gaiotto, G. Moore, A. Neitzke, Ann. Henri Poincaré, 14:7 (2013), 1643–1731, arXiv: 1204.4824 | DOI | MR | Zbl

[14] A. B. Goncharov, R. Kenyon, Ann. Sci. de l'Ecole Norm. Sup. (4), 46:5 (2013), 747–813 | DOI | MR | Zbl

[15] A. Marshakov, J. Geom. Phys., 67 (2013), 16–36, arXiv: 1207.1869 | DOI | MR | Zbl

[16] V. V. Fock, A. Marshakov, Loop groups, clusters, dimers and integrable systems, arXiv: 1401.1606 | MR

[17] H. Williams, Int. Math. Res. Notices, 2015:22 (2015), 12042–12069 | DOI | Zbl

[18] S. Fomin, A. Zelevinsky, Compos. Math., 143:1 (2007), 112–164 | DOI | MR | Zbl

[19] C. Geiss, B. Leclerc, J. Schröer, J. Amer. Math. Soc., 25:1 (2012), 21–76 | DOI | MR | Zbl

[20] H. Derksen, J. Weyman, A. Zelevinsky, Selecta Math., 14:1 (2008), 59–119 | DOI | MR | Zbl

[21] P. Caldero, B. Keller, Ann. Sci. Éc. Norm. Supér. (4), 39:6 (2006), 983–1009 | DOI | MR | Zbl

[22] Y. Palu, Ann. Inst. Fourier (Grenoble), 58:6 (2008), 2221–2248 | DOI | MR | Zbl

[23] P. Plamondon, Adv. Math., 277:1 (2011), 1–39 | DOI | MR

[24] V. V. Fock, A. B. Goncharov, Ann. Sci. Éc. Norm. Supér., 42:6 (2009), 865–930 | DOI | MR | Zbl

[25] V. V. Fock, A. B. Goncharov, “Dual Teichmuller and Lamination Spaces”, Handbook of Teichmuller Theory, v. I, IRMA Lectures in Mathematics and Theoretical Physics, Eur. Math. Soc., Zürich, 2007, 647–684 | DOI | MR | Zbl

[26] P. Boalch, Indag. Math. (N. S.), 25:5 (2014), 872–900 | DOI | MR | Zbl

[27] S. Fomin, A. Zelevinsky, J. Amer. Math. Soc., 12:2 (1999), 335–380 | DOI | MR | Zbl

[28] A. Berenstein, S. Fomin, A. Zelevinsky, Duke Math. J., 126:1 (2005), 1–52 | DOI | MR | Zbl

[29] T. Hoffmann, J. Kellendonk, N. Kutz, N. Reshetikhin, Commun. Math. Phys., 212:2 (2000), 297–321 | DOI | MR | Zbl

[30] S. Fomin, A. Zelevinsky, Math. Intelligencer, 22:1 (2000), 23–33 | DOI | MR | Zbl

[31] C. Ringel, Linear Algebra Appl., 275–276 (1998), 471–493 | DOI | MR | Zbl

[32] G. Cerulli-Irelli, J. Algebraic Combin., 33:2 (2011), 259–276 | DOI | MR | Zbl

[33] O. Biquard, P. Boalch, Compos. Math., 140:1 (2004), 179–204 | DOI | MR | Zbl

[34] E. Witten, Anal. Appl. (Singap.), 6:4 (2008), 429–501 | DOI | MR | Zbl

[35] M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, R. Rastogi, C. Vafa, $N=2$ quantum field theories and their BPS quivers, arXiv: 1112.3984 | MR

[36] A. Klemm, W. Lerche, P. Mayr, C. Vafa, N. Warner, Nucl. Phys. B, 477:3 (1996), 746–764, arXiv: hep-th/9604034 | DOI | MR | Zbl

[37] D. Gaiotto, G. Moore, A. Neitzke, Adv. Theor. Math. Phys., 17:2 (2013), 241–397 | DOI | MR | Zbl

[38] C. Córdova, A. Neitzke, JHEP, 09 (2014), 099, 65 pp., arXiv: 1308.6829 | DOI | MR

[39] M. Cirafici, JHEP, 11 (2013), 077, arXiv: 1309.2656 | DOI | Zbl

[40] D. Xie, Aspects of line operators of class $S$ theories, arXiv: 1312.3371

[41] W.-Y. Chuang, D.-E. Diaconescu, J. Manschot, G. W. Moore, Y. Soibelman, Geometric engineering of (framed) BPS states, arXiv: 1301.3065 | MR

[42] K. Nagao, Duke Math. J., 162:7 (2013), 1313–1367 | DOI | MR | Zbl

[43] M. Reineke, J. Algebra, 320:1 (2008), 94–115 | DOI | MR | Zbl

[44] S. Cecotti, A. Neitzke, C. Vafa, R-twisting and 4d/2d correspondences, arXiv: 1006.3435

[45] S. Cecotti, M. Del Zotto, JHEP, 10 (2012), 190, 34 pp., arXiv: 1207.7205 | DOI | MR

[46] N. Nekrasov, Nucl. Phys. B, 531:1–3 (1998), 323–344, arXiv: hep-th/9609219 | DOI | MR | Zbl