@article{TMF_2015_185_3_a6,
author = {H. Williams},
title = {Cluster characters and the~combinatorics of {Toda} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {495--511},
year = {2015},
volume = {185},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a6/}
}
H. Williams. Cluster characters and the combinatorics of Toda systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 495-511. http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a6/
[1] S. Fomin, A. Zelevinsky, J. Amer. Math. Soc., 15:2 (2002), 497–529 | DOI | MR | Zbl
[2] P. Caldero, F. Chapoton, Comment. Math. Helv., 81:3 (2006), 595–616 | DOI | MR | Zbl
[3] B. Keller, “Cluster algebras and derived categories”, Derived Categories in Algebraic Geometry, Eur. Math. Soc., Zurich, 2012, 123–183 | MR | Zbl
[4] V. V. Fock, A. B. Goncharov, Publ. Math. Inst. Hautes Etudes Sci., 103 (2006), 1–211 | DOI | MR | Zbl
[5] G. Musiker, R. Schiffler, L. Williams, Compos. Math., 149:2 (2013), 217–263 | DOI | MR | Zbl
[6] H. Williams, Toda systems, cluster characters, and spectral networks, arXiv: 1411.3692 | MR
[7] T. Brustle, J. Zhang, Algebra Number Theory, 5:4 (2011), 529–566 | DOI | MR | Zbl
[8] M. Gekhtman, M. Shapiro, A. Vainshtein, Acta Math., 206:2 (2011), 245–310 | DOI | MR | Zbl
[9] R. Kedem, J. Phys. A, 41:19 (2008), 194011, 14 pp. | DOI | MR | Zbl
[10] P. Di Francesco, R. Kedem, Lett. Math. Phys., 89:3 (2009), 183–216 | DOI | MR | Zbl
[11] E. Martinec, N. Warner, Nucl. Phys. B, 459:1–2 (1996), 97–112, arXiv: hep-th/9509161 | DOI | MR | Zbl
[12] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355:3–4 (1995), 466–474, arXiv: hep-th/9505035 | DOI | MR | Zbl
[13] D. Gaiotto, G. Moore, A. Neitzke, Ann. Henri Poincaré, 14:7 (2013), 1643–1731, arXiv: 1204.4824 | DOI | MR | Zbl
[14] A. B. Goncharov, R. Kenyon, Ann. Sci. de l'Ecole Norm. Sup. (4), 46:5 (2013), 747–813 | DOI | MR | Zbl
[15] A. Marshakov, J. Geom. Phys., 67 (2013), 16–36, arXiv: 1207.1869 | DOI | MR | Zbl
[16] V. V. Fock, A. Marshakov, Loop groups, clusters, dimers and integrable systems, arXiv: 1401.1606 | MR
[17] H. Williams, Int. Math. Res. Notices, 2015:22 (2015), 12042–12069 | DOI | Zbl
[18] S. Fomin, A. Zelevinsky, Compos. Math., 143:1 (2007), 112–164 | DOI | MR | Zbl
[19] C. Geiss, B. Leclerc, J. Schröer, J. Amer. Math. Soc., 25:1 (2012), 21–76 | DOI | MR | Zbl
[20] H. Derksen, J. Weyman, A. Zelevinsky, Selecta Math., 14:1 (2008), 59–119 | DOI | MR | Zbl
[21] P. Caldero, B. Keller, Ann. Sci. Éc. Norm. Supér. (4), 39:6 (2006), 983–1009 | DOI | MR | Zbl
[22] Y. Palu, Ann. Inst. Fourier (Grenoble), 58:6 (2008), 2221–2248 | DOI | MR | Zbl
[23] P. Plamondon, Adv. Math., 277:1 (2011), 1–39 | DOI | MR
[24] V. V. Fock, A. B. Goncharov, Ann. Sci. Éc. Norm. Supér., 42:6 (2009), 865–930 | DOI | MR | Zbl
[25] V. V. Fock, A. B. Goncharov, “Dual Teichmuller and Lamination Spaces”, Handbook of Teichmuller Theory, v. I, IRMA Lectures in Mathematics and Theoretical Physics, Eur. Math. Soc., Zürich, 2007, 647–684 | DOI | MR | Zbl
[26] P. Boalch, Indag. Math. (N. S.), 25:5 (2014), 872–900 | DOI | MR | Zbl
[27] S. Fomin, A. Zelevinsky, J. Amer. Math. Soc., 12:2 (1999), 335–380 | DOI | MR | Zbl
[28] A. Berenstein, S. Fomin, A. Zelevinsky, Duke Math. J., 126:1 (2005), 1–52 | DOI | MR | Zbl
[29] T. Hoffmann, J. Kellendonk, N. Kutz, N. Reshetikhin, Commun. Math. Phys., 212:2 (2000), 297–321 | DOI | MR | Zbl
[30] S. Fomin, A. Zelevinsky, Math. Intelligencer, 22:1 (2000), 23–33 | DOI | MR | Zbl
[31] C. Ringel, Linear Algebra Appl., 275–276 (1998), 471–493 | DOI | MR | Zbl
[32] G. Cerulli-Irelli, J. Algebraic Combin., 33:2 (2011), 259–276 | DOI | MR | Zbl
[33] O. Biquard, P. Boalch, Compos. Math., 140:1 (2004), 179–204 | DOI | MR | Zbl
[34] E. Witten, Anal. Appl. (Singap.), 6:4 (2008), 429–501 | DOI | MR | Zbl
[35] M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, R. Rastogi, C. Vafa, $N=2$ quantum field theories and their BPS quivers, arXiv: 1112.3984 | MR
[36] A. Klemm, W. Lerche, P. Mayr, C. Vafa, N. Warner, Nucl. Phys. B, 477:3 (1996), 746–764, arXiv: hep-th/9604034 | DOI | MR | Zbl
[37] D. Gaiotto, G. Moore, A. Neitzke, Adv. Theor. Math. Phys., 17:2 (2013), 241–397 | DOI | MR | Zbl
[38] C. Córdova, A. Neitzke, JHEP, 09 (2014), 099, 65 pp., arXiv: 1308.6829 | DOI | MR
[39] M. Cirafici, JHEP, 11 (2013), 077, arXiv: 1309.2656 | DOI | Zbl
[40] D. Xie, Aspects of line operators of class $S$ theories, arXiv: 1312.3371
[41] W.-Y. Chuang, D.-E. Diaconescu, J. Manschot, G. W. Moore, Y. Soibelman, Geometric engineering of (framed) BPS states, arXiv: 1301.3065 | MR
[42] K. Nagao, Duke Math. J., 162:7 (2013), 1313–1367 | DOI | MR | Zbl
[43] M. Reineke, J. Algebra, 320:1 (2008), 94–115 | DOI | MR | Zbl
[44] S. Cecotti, A. Neitzke, C. Vafa, R-twisting and 4d/2d correspondences, arXiv: 1006.3435
[45] S. Cecotti, M. Del Zotto, JHEP, 10 (2012), 190, 34 pp., arXiv: 1207.7205 | DOI | MR
[46] N. Nekrasov, Nucl. Phys. B, 531:1–3 (1998), 323–344, arXiv: hep-th/9609219 | DOI | MR | Zbl