Quiver varieties and the quantum Knizhnik–Zamolodchikov equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 438-459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show how equivariant volumes of tensor product quiver varieties of type A are given by matrix elements of vertex operators of centrally extended doubles of Yangians and how these elements satisfy the rational level-one quantum Knizhnik–Zamolodchikov equation in some cases.
Keywords: quiver variety, quantum Knizhnik–Zamolodchikov equation, quantum integrable system, equivariant cohomology.
@article{TMF_2015_185_3_a3,
     author = {P. Zinn-Justin},
     title = {Quiver varieties and the~quantum {Knizhnik{\textendash}Zamolodchikov} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {438--459},
     year = {2015},
     volume = {185},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a3/}
}
TY  - JOUR
AU  - P. Zinn-Justin
TI  - Quiver varieties and the quantum Knizhnik–Zamolodchikov equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 438
EP  - 459
VL  - 185
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a3/
LA  - ru
ID  - TMF_2015_185_3_a3
ER  - 
%0 Journal Article
%A P. Zinn-Justin
%T Quiver varieties and the quantum Knizhnik–Zamolodchikov equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 438-459
%V 185
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a3/
%G ru
%F TMF_2015_185_3_a3
P. Zinn-Justin. Quiver varieties and the quantum Knizhnik–Zamolodchikov equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 438-459. http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a3/

[1] V. Ginzburg, M. Kapranov, E. Vasserot, Elliptic algebras and equivariant elliptic cohomology, arXiv: q-alg/9505012

[2] V. Ginzburg, M. Kapranov, E. Vasserot, Adv. Math., 214:1 (2007), 40–77, arXiv: math/0503224 | DOI | MR

[3] P. Di Francesco, P. Zinn-Justin, J. Phys. A, 38:48 (2005), L815–L822, arXiv: math-ph/0508059 | DOI | MR | Zbl

[4] D. Maulik, A. Okounkov, Quantum groups and quantum cohomology, arXiv: 1211.1287

[5] R. Rimányi, V. Tarasov, A. Varchenko, P. Zinn-Justin, J. Geom. Phys., 62:11 (2012), 2188–2207, arXiv: 1110.2187 | DOI | MR | Zbl

[6] H. Nakajima, Duke Math. J., 76:2 (1994), 365–416 | DOI | MR | Zbl

[7] H. Nakajima, Duke Math. J., 91:3 (1998), 515–560 | DOI | MR | Zbl

[8] H. Nakajima, J. Amer. Math. Soc., 14:1 (2001), 145–238, arXiv: math/9912158 | DOI | MR | Zbl

[9] H. Nakajima, Invent. Math., 146:2 (2001), 399–449, arXiv: math/0103008 | DOI | MR | Zbl

[10] V. Ginzburg, “Lectures on Nakajima's quiver varieties”, Geometric Methods in Representation Theory. I (Grenoble, France, June 16.–J̇uly 4, 2008), Séminairés et Congrès, 24, ed. M. Brion, Société Mathématique de France, Paris, 2012, 145–219, arXiv: 0905.0686 | MR | Zbl

[11] I. Mirković, M. Vybornov, Quiver varieties and Beilinson–Drinfeld Grassmannians of type A, arXiv: 0712.4160

[12] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, 946, Springer-Verlag, Berlin, 1982 | DOI | MR | Zbl

[13] S. Khoroshkin, “Central extension of the Yangian double”, Algèbre non commutative, groupes quantiques et invariants (Franco-Belge, Reims, June 1995), Séminairés et Congrès, 2, ed. J. Alev, G. Cauchon, Société Mathématique de France, Paris, 1997, 119–135, arXiv: q-alg/9602031 | MR

[14] S. Khoroshkin, D. Lebedev, S. Pakuliak, Phys. Lett. A, 222:6 (1996), 381–392, arXiv: q-alg/9602030 | DOI | MR | Zbl

[15] S. Khoroshkin, D. Lebedev, S. Pakuliak, Lett. Math. Phys., 41:1 (1997), 31–47, arXiv: q-alg/9605039 | DOI | MR | Zbl

[16] A. Nakayashiki, Commun. Math. Phys., 212:1 (2000), 29–61, arXiv: math/9902139 | DOI | MR | Zbl

[17] V. Tarasov, A. Varchenko, Invent. Math., 128:3 (1997), 501–588 | DOI | MR | Zbl

[18] I. Frenkel, N. Reshetikhin, Commun. Math. Phys., 146:1 (1992), 1–60 | DOI | MR | Zbl

[19] M. Idzumi, T. Tokihiro, K. Iohara, M. Jimbo, T. Miwa, T. Nakashima, Internat. J. Modern Phys. A, 8:8 (1993), 1479–1511, arXiv: hep-th/9208066 | DOI | MR

[20] A. Ponsaing, P. Zinn-Justin, Type $\hat{\mathrm C}$ brauer loop schemes and loop model with boundaries, arXiv: 1410.0262 | MR

[21] I. Cherednik, Commun. Math. Phys., 150:1 (1992), 109–136 | DOI | MR | Zbl

[22] D. Grayson, M. Stillman http://www.math.uiuc.edu/Macaulay2/