@article{TMF_2015_185_3_a3,
author = {P. Zinn-Justin},
title = {Quiver varieties and the~quantum {Knizhnik{\textendash}Zamolodchikov} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {438--459},
year = {2015},
volume = {185},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a3/}
}
P. Zinn-Justin. Quiver varieties and the quantum Knizhnik–Zamolodchikov equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 438-459. http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a3/
[1] V. Ginzburg, M. Kapranov, E. Vasserot, Elliptic algebras and equivariant elliptic cohomology, arXiv: q-alg/9505012
[2] V. Ginzburg, M. Kapranov, E. Vasserot, Adv. Math., 214:1 (2007), 40–77, arXiv: math/0503224 | DOI | MR
[3] P. Di Francesco, P. Zinn-Justin, J. Phys. A, 38:48 (2005), L815–L822, arXiv: math-ph/0508059 | DOI | MR | Zbl
[4] D. Maulik, A. Okounkov, Quantum groups and quantum cohomology, arXiv: 1211.1287
[5] R. Rimányi, V. Tarasov, A. Varchenko, P. Zinn-Justin, J. Geom. Phys., 62:11 (2012), 2188–2207, arXiv: 1110.2187 | DOI | MR | Zbl
[6] H. Nakajima, Duke Math. J., 76:2 (1994), 365–416 | DOI | MR | Zbl
[7] H. Nakajima, Duke Math. J., 91:3 (1998), 515–560 | DOI | MR | Zbl
[8] H. Nakajima, J. Amer. Math. Soc., 14:1 (2001), 145–238, arXiv: math/9912158 | DOI | MR | Zbl
[9] H. Nakajima, Invent. Math., 146:2 (2001), 399–449, arXiv: math/0103008 | DOI | MR | Zbl
[10] V. Ginzburg, “Lectures on Nakajima's quiver varieties”, Geometric Methods in Representation Theory. I (Grenoble, France, June 16.–J̇uly 4, 2008), Séminairés et Congrès, 24, ed. M. Brion, Société Mathématique de France, Paris, 2012, 145–219, arXiv: 0905.0686 | MR | Zbl
[11] I. Mirković, M. Vybornov, Quiver varieties and Beilinson–Drinfeld Grassmannians of type A, arXiv: 0712.4160
[12] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, 946, Springer-Verlag, Berlin, 1982 | DOI | MR | Zbl
[13] S. Khoroshkin, “Central extension of the Yangian double”, Algèbre non commutative, groupes quantiques et invariants (Franco-Belge, Reims, June 1995), Séminairés et Congrès, 2, ed. J. Alev, G. Cauchon, Société Mathématique de France, Paris, 1997, 119–135, arXiv: q-alg/9602031 | MR
[14] S. Khoroshkin, D. Lebedev, S. Pakuliak, Phys. Lett. A, 222:6 (1996), 381–392, arXiv: q-alg/9602030 | DOI | MR | Zbl
[15] S. Khoroshkin, D. Lebedev, S. Pakuliak, Lett. Math. Phys., 41:1 (1997), 31–47, arXiv: q-alg/9605039 | DOI | MR | Zbl
[16] A. Nakayashiki, Commun. Math. Phys., 212:1 (2000), 29–61, arXiv: math/9902139 | DOI | MR | Zbl
[17] V. Tarasov, A. Varchenko, Invent. Math., 128:3 (1997), 501–588 | DOI | MR | Zbl
[18] I. Frenkel, N. Reshetikhin, Commun. Math. Phys., 146:1 (1992), 1–60 | DOI | MR | Zbl
[19] M. Idzumi, T. Tokihiro, K. Iohara, M. Jimbo, T. Miwa, T. Nakashima, Internat. J. Modern Phys. A, 8:8 (1993), 1479–1511, arXiv: hep-th/9208066 | DOI | MR
[20] A. Ponsaing, P. Zinn-Justin, Type $\hat{\mathrm C}$ brauer loop schemes and loop model with boundaries, arXiv: 1410.0262 | MR
[21] I. Cherednik, Commun. Math. Phys., 150:1 (1992), 109–136 | DOI | MR | Zbl
[22] D. Grayson, M. Stillman http://www.math.uiuc.edu/Macaulay2/