Elliptic parameterization of Pfaff integrable hierarchies in the zero-dispersion limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 410-422 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the dispersionless limits of the Pfaff–KP {(}also known as the $D$KP or Pfaff lattice{)} and the Pfaff–Toda hierarchies admit a reformulation in terms of elliptic functions. In the elliptic form, they look like natural elliptic deformations of the respective dispersionless KP and two-dimensional Toda hierarchies.
Keywords: integrable hierarchy, elliptic function, Loewner equation.
@article{TMF_2015_185_3_a1,
     author = {V. E. Akhmedova and A. V. Zabrodin},
     title = {Elliptic parameterization of {Pfaff} integrable hierarchies in the~zero-dispersion limit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--422},
     year = {2015},
     volume = {185},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a1/}
}
TY  - JOUR
AU  - V. E. Akhmedova
AU  - A. V. Zabrodin
TI  - Elliptic parameterization of Pfaff integrable hierarchies in the zero-dispersion limit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 410
EP  - 422
VL  - 185
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a1/
LA  - ru
ID  - TMF_2015_185_3_a1
ER  - 
%0 Journal Article
%A V. E. Akhmedova
%A A. V. Zabrodin
%T Elliptic parameterization of Pfaff integrable hierarchies in the zero-dispersion limit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 410-422
%V 185
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a1/
%G ru
%F TMF_2015_185_3_a1
V. E. Akhmedova; A. V. Zabrodin. Elliptic parameterization of Pfaff integrable hierarchies in the zero-dispersion limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 410-422. http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a1/

[1] M. Jimbo, T. Miwa, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[2] R. Hirota, Y. Ohta, J. Phys. Soc. Japan, 60:3 (1991), 798–809 | DOI | MR | Zbl

[3] M. Adler, E. Horozov, P. van Moerbeke, Internat. Math. Res. Notices, 1999:11 (1999), 569–588 | DOI | MR | Zbl

[4] M. Adler, T. Shiota, P. van Moerbeke, Math. Ann., 322:3 (2002), 423–476 | DOI | MR | Zbl

[5] S. Kakei, J. Phys. Soc. Japan, 68:9 (1999), 2875–2877 | DOI | MR

[6] S. Isojima, R. Willox, J. Satsuma, J. Phys. A: Math. Gen., 35:32 (2002), 6893–6909 | DOI | MR | Zbl

[7] J. van de Leur, J. Nonlinear Math. Phys., 8:2 (2001), 288–310 | DOI | MR | Zbl

[8] A. Orlov, Phys. Lett. A, 378:4 (2014), 319–328 | DOI | MR

[9] Y. Kodama, K.-I. Maruno, J. Phys. A: Math. Gen., 39:15 (2006), 4063–4086, arXiv: nlin/0602031 | DOI | MR | Zbl

[10] Y. Kodama, V. Pierce, Commun. Math. Phys., 292:2 (2009), 529–568, arXiv: 0811.0351 | DOI | MR | Zbl

[11] M. Adler, V. Kuznetsov, P. van Moerbeke, Ergodic Theory Dynam. Systems, 22:5 (2002), 1365–1405 | DOI | MR | Zbl

[12] R. Willox, Glasg. Math. J., 47:A (2005), 221–231 | DOI | MR

[13] K. Takasaki, SIGMA, 5 (2009), 109, 34 pp. | DOI | MR | Zbl

[14] K. Takasaki, “Differential Fay identities and auxiliary linear problem of integrable hierachies”, Exploring New Structures and Natural Constructions in Mathematical Physics (Nagoya, Japan, March 5–8, 2007), Advanced Studies in Pure Mathematics, 61, eds. K. Hasegawa, T. Hayashi, S. Hosono, Y. Yamada, Math. Soc. Japan, Tokyo, 2011, 387–441 | MR | Zbl

[15] I. M. Krichever, Funkts. anal. i ego pril., 22:3 (1988), 37–52 | DOI | MR | Zbl

[16] I. Krichever, A. Marshakov, A. Zabrodin, Commun. Math. Phys., 259:1 (2005), 1–44, arXiv: hep-th/0309010 | DOI | MR | Zbl

[17] V. Akhmedova, A. Zabrodin, J. Phys. A: Math. Theor., 47:39 (2014), 392001, 13 pp., arXiv: 1404.5135 | DOI | MR | Zbl

[18] T. Takasaki, T. Takebe, Rev. Math. Phys., 7:5 (1995), 743–808 | DOI | MR | Zbl

[19] T. Takebe, Lectures on Dispersionless Integrable Hierarchies, Rikkyo Center of Mathematical Physics, 2, Research Center for Mathematical Physics, Rikkyo Universty, Tokyo, 2014

[20] A. V. Zabrodin, TMF, 113:2 (1997), 179–230 | DOI | DOI | MR

[21] S. Kharchev, A. Zabrodin, J. Geom. Phys., 94 (2015), 19–31, arXiv: 1502.04603 | DOI | MR | Zbl