Mots-clés : Givental decomposition, moduli space
@article{TMF_2015_185_3_a0,
author = {J. E. Andersen and L. O. Chekhov and P. Norbury and R. C. Penner},
title = {Topological recursion for {Gaussian} means and cohomological field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {371--409},
year = {2015},
volume = {185},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a0/}
}
TY - JOUR AU - J. E. Andersen AU - L. O. Chekhov AU - P. Norbury AU - R. C. Penner TI - Topological recursion for Gaussian means and cohomological field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2015 SP - 371 EP - 409 VL - 185 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a0/ LA - ru ID - TMF_2015_185_3_a0 ER -
%0 Journal Article %A J. E. Andersen %A L. O. Chekhov %A P. Norbury %A R. C. Penner %T Topological recursion for Gaussian means and cohomological field %J Teoretičeskaâ i matematičeskaâ fizika %D 2015 %P 371-409 %V 185 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a0/ %G ru %F TMF_2015_185_3_a0
J. E. Andersen; L. O. Chekhov; P. Norbury; R. C. Penner. Topological recursion for Gaussian means and cohomological field. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 3, pp. 371-409. http://geodesic.mathdoc.fr/item/TMF_2015_185_3_a0/
[1] J. Harer, D. Zagier, Invent. Math., 85:3 (1986), 457–485 | DOI | MR | Zbl
[2] É. Brezin, S. Hikami, Commun. Math. Phys., 283:2 (2008), 507–521, arXiv: 0708.2210 | DOI | MR | Zbl
[3] A. Morozov, Sh. Shakirov, From Brezin–Hikami to Harer–Zagier formulas for Gaussian correlators, arXiv: 1007.4100
[4] L. Chekhov, B. Eynard, JHEP, 03 (2006), 014, 18 pp., arXiv: hep-th/0504116 | DOI | MR
[5] B. Eynard, N. Orantin, Commun. Number Theory Phys., 1:2 (2007), 347–452 | DOI | MR | Zbl
[6] S. Gukov, P. Sułkowski, JHEP, 2 (2012), 070, 56 pp., arXiv: 1108.0002 | DOI | MR | Zbl
[7] M. Mulase, P. Sułkowski, Spectral curves and the Schrödinger equations for the Eynard–Orantin recursion, arXiv: 1210.3006
[8] O. Dumitrescu, M. Mulase, Quantization of spectral curves for meromorphic Higgs bundles through topological recursion, arXiv: 1411.1023
[9] J. E. Andersen, L. O. Chekhov, P. Norbury, R. C. Penner, Models of discretized moduli spaces, cohomological field theories, and Gaussian means, arXiv: 1501.05867 | MR
[10] L. Chekhov, Yu. Makeenko, Modern Phys. Lett. A, 7:14 (1992), 1223–1236, arXiv: hep-th/9201033 | DOI | MR | Zbl
[11] J. Ambjørn, L. Chekhov, C. F. Kristjansen, Yu. Makeenko, Nucl. Phys. B, 404:1–2 (1993), 127–172, arXiv: ; Erratum, 449:3 (1995), 681 hep-th/9302014 | DOI | MR | DOI | Zbl
[12] Y. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, American Mathematical Society Colloquium Publications, 47, AMS, Providence, RI, 1999 | MR | Zbl
[13] L. Chekhov, Yu. Makeenko, Phys. Lett. B, 278:3 (1992), 271–278, arXiv: hep-th/9202006 | DOI | MR
[14] A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 265:1–2 (1991), 99–107 | DOI | MR
[15] P. Norbury, Quantum curves and topological recursion, arXiv: 1502.04394 | MR
[16] L. Chekhov, J. Geom. Phys., 12:3 (1993), 153–164, arXiv: hep-th/9205106 | DOI | MR | Zbl
[17] P. Norbury, Trans. Amer. Math. Soc., 365:4 (2013), 1687–1709 | DOI | MR | Zbl
[18] M. Mulase, M. Penkava, Adv. Math., 230:3 (2012), 1322–1339, arXiv: 1009.2135 | DOI | MR | Zbl
[19] P. Norbury, Math. Res. Lett., 17:3 (2010), 467–481 | DOI | MR | Zbl
[20] L. Chekhov, Acta Appl. Math., 48:1 (1997), 33–90, arXiv: hep-th/9509001 | DOI | MR | Zbl
[21] A. B. Givental, Mosc. Math. J., 1:4 (2001), 551–568 | MR | Zbl
[22] B. Eynard, Commun. Number Theory Phys., 8:3 (2014), 541–588, arXiv: 1110.2949 | DOI | MR | Zbl
[23] P. Dunin-Barkowski, N. Orantin, S. Shadrin, L. Spitz, Commun. Math. Phys., 328:2 (2014), 669–700, arXiv: 1211.4021 | DOI | MR | Zbl
[24] B. Eynard, JHEP, 11 (2004), 031, 35 pp., arXiv: hep-th/0407261 | DOI | MR
[25] L. Chekhov, B. Eynard, N. Orantin, JHEP, 12 (2006), 053, 31 pp., arXiv: math-ph/0603003 | DOI | MR | Zbl
[26] A. Alexandrov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 19:24 (2004), 4127–4165, arXiv: hep-th/0310113 | DOI | MR
[27] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum groups (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[28] P. Dunin-Barkowski, P. Norbury, N. Orantin, P. Popolitov, S. Shadrin, “Superpotentials and the Eynard–Orantin topological recursion”, In preparation
[29] J. E. Andersen, R. C. Penner, C. M. Reidys, M. S. Waterman, J. Math. Biol., 67:5 (2013), 1261–1278 | DOI | MR | Zbl
[30] J. Harer, Invent. Math., 84:1 (1986), 157–176 | DOI | MR | Zbl
[31] K. Strebel, Quadratic Differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Springer, Berlin, 1984 | MR | Zbl
[32] R. C. Penner, Commun. Math. Phys., 113:2 (1987), 299–339 | DOI | MR | Zbl
[33] R. C. Penner, J. Differential Geom., 27:1 (1988), 35–53 | DOI | MR | Zbl
[34] M. L. Kontsevich, Commun. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl
[35] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, Phys. Lett. B, 275:3–4 (1992), 311–314, arXiv: hep-th/9111037 | DOI | MR
[36] J. Ambjørn, L. Chekhov, Ann. Inst. Henri Poincaré D, 1:3 (2014), 337–361, arXiv: 1404.4240 | DOI | MR | Zbl
[37] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, JHEP, 11 (2014), 080, 30 pp., arXiv: 1405.1395 | DOI | MR | Zbl
[38] J. E. Andersen, L. O. Chekhov, C. M. Reidys, R. C. Penner, P. Sułkowski, Nucl. Phys. B, 866:3 (2013), 414–443, arXiv: 1205.0658 | DOI | MR | Zbl
[39] S. Keel, Trans. Amer. Math. Soc., 330:2 (1992), 545–574 | DOI | MR | Zbl
[40] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl
[41] C. Teleman, Invent. Math., 188:3 (2012), 525–588 | DOI | MR | Zbl
[42] U. Haagerup, S. Thorbjørnsen, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15:1 (2012), 1250003, 41 pp. | DOI | MR | Zbl
[43] R. J. Milgram, R. C. Penner, “Riemann's moduli space and the symmetric group”, Mapping Class Groups and Moduli Spaces of Riemann Surfaces (Göttingen, Germany, June 24–28, 1991; Seattle, WA, USA, August 6–10, 1991), Contemporary Mathematics, 150, eds. C.-F. Bödigheimer, R. M. Hain, AMS, Providence, RI, 1993, 247–290 | DOI | MR | Zbl
[44] B. Fang, C.-C. M. Liu, Z. Zong, The Eynard–Orantin recursion and equivariant mirror symmetry for the projective line, arXiv: 1411.3557 | MR