Gepner approach to space–time supersymmetry in ten-dimensional string theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 2, pp. 329-345 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The fermionic Neveu–Schwartz–Ramond string has a hidden $N=2$ superconformal symmetry on the worldsheet. Using an isomorphism of the $N=2$ superconformal algebra, we show how to obtain a subspace of physical string states on which the super-Poincaré group acts. The proposed construction is an alternative to the GSO projection in string theory.
Keywords: string theory, conformal field theory.
@article{TMF_2015_185_2_a5,
     author = {A. A. Belavin and L. A. Spodyneiko},
     title = {Gepner approach to space{\textendash}time supersymmetry in ten-dimensional string theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--345},
     year = {2015},
     volume = {185},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a5/}
}
TY  - JOUR
AU  - A. A. Belavin
AU  - L. A. Spodyneiko
TI  - Gepner approach to space–time supersymmetry in ten-dimensional string theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 329
EP  - 345
VL  - 185
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a5/
LA  - ru
ID  - TMF_2015_185_2_a5
ER  - 
%0 Journal Article
%A A. A. Belavin
%A L. A. Spodyneiko
%T Gepner approach to space–time supersymmetry in ten-dimensional string theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 329-345
%V 185
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a5/
%G ru
%F TMF_2015_185_2_a5
A. A. Belavin; L. A. Spodyneiko. Gepner approach to space–time supersymmetry in ten-dimensional string theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 2, pp. 329-345. http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a5/

[1] M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[2] J. Polchinski, String Theory, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 1998 | DOI | DOI | MR | Zbl

[3] R. Blumenhagen, D. Lüst, S. Theisen, Basic Concepts of String Theory, Springer, Berlin, 2013 | DOI | MR

[4] A. Neveu, J. H. Schwarz, Nucl. Phys. B, 31:1 (1971), 86–112 | DOI

[5] P. Ramond, Phys. Rev. D, 3:10 (1971), 2415–2418 | DOI | MR

[6] F. Gliozzi, J. Scherk, D. I. Olive, Phys. Lett. B, 65:3 (1976), 282–286 | DOI

[7] F. Gliozzi, J. Scherk, D. I. Olive, Nucl. Phys. B, 122:2 (1977), 253–290 | DOI | MR

[8] D. Friedan, S. H. Shenker, E. J. Martinec, Phys. Lett. B, 160:1–3 (1985), 55–61 | DOI | MR

[9] D. Friedan, E. Martinec, S. Shenker, Nucl. Phys. B, 271:1 (1986), 93–165 | DOI | MR

[10] V. G. Knizhnik, Phys. Lett. B, 160:6 (1985), 403–407 | DOI | MR

[11] D. Gepner, Nucl. Phys. B, 296:4 (1988), 757–778 | DOI | MR

[12] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[13] E. P. Verlinde, H. L. Verlinde, “Lectures on string perturbation theory”, Superstrings'88 (Trieste, Italy, 11–19 April, 1988), eds. M. B. Green, M. Grisaru, R. Iengo, E. Sezgin, A. Strominger, World Sci., Singapore, 1988, 189–250 | MR

[14] A. Schwimmer, N. Seiberg, Phys. Lett. B, 184:2–3 (1987), 191–196 | DOI | MR

[15] D. Gepner, “Lectures on $N=2$ string theory”, Superstrings'89 (Trieste, Italy, 3–11 April, 1989), eds. M. Green, R. Iengo, S. Randjbar-Daemi, E. Sezgin, A. Strominger, World Sci., Singapore, 1989, 238–302 | MR

[16] T. Banks, L. J. Dixon, D. Friedan, E. J. Martinec, Nucl. Phys. B, 299:3 (1988), 613–626 | DOI | MR