The~differential geometry of blow-ups
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 2, pp. 313-328
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss the local geometry in the vicinity of a sphere $\mathbb P^1$ embedded with a negative normal bundle. We show that the behavior of the Kähler potential near a sphere embedded with a given normal bundle can be determined using the adjunction formula. As a by-product, we construct (asymptotically locally complex-hyperbolic) Kähler–Einstein metrics on the total spaces of the line bundles $\mathcal O(-m)$, $m\ge3$, over $\mathbb P^1$.
Keywords:
blow-up, adjunction formula, Kähler–Einstein metric.
@article{TMF_2015_185_2_a4,
author = {D. V. Bykov},
title = {The~differential geometry of blow-ups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {313--328},
publisher = {mathdoc},
volume = {185},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a4/}
}
D. V. Bykov. The~differential geometry of blow-ups. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 2, pp. 313-328. http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a4/