The differential geometry of blow-ups
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 2, pp. 313-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the local geometry in the vicinity of a sphere $\mathbb P^1$ embedded with a negative normal bundle. We show that the behavior of the Kähler potential near a sphere embedded with a given normal bundle can be determined using the adjunction formula. As a by-product, we construct (asymptotically locally complex-hyperbolic) Kähler–Einstein metrics on the total spaces of the line bundles $\mathcal O(-m)$, $m\ge3$, over $\mathbb P^1$.
Keywords: blow-up, adjunction formula
Mots-clés : Kähler–Einstein metric.
@article{TMF_2015_185_2_a4,
     author = {D. V. Bykov},
     title = {The~differential geometry of blow-ups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {313--328},
     year = {2015},
     volume = {185},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a4/}
}
TY  - JOUR
AU  - D. V. Bykov
TI  - The differential geometry of blow-ups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 313
EP  - 328
VL  - 185
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a4/
LA  - ru
ID  - TMF_2015_185_2_a4
ER  - 
%0 Journal Article
%A D. V. Bykov
%T The differential geometry of blow-ups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 313-328
%V 185
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a4/
%G ru
%F TMF_2015_185_2_a4
D. V. Bykov. The differential geometry of blow-ups. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 2, pp. 313-328. http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a4/

[1] H. W. Braden, N. A. Nekrasov, Commun. Math. Phys., 249:3 (2004), 431–448, arXiv: hep-th/9912019 | DOI | MR | Zbl

[2] D. V. Bykov, “Instantony, razdutiya i kelerovy metriki”, TMF, 2015 (to appear)

[3] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, Yu. I. Manin, Phys. Lett. A, 65:3 (1978), 185–187 | DOI | MR | Zbl

[4] N. Nekrasov, A. S. Schwarz, Commun. Math. Phys., 198:3 (1998), 689–703, arXiv: hep-th/9802068 | DOI | MR | Zbl

[5] M. F. Atiyah, Geometry of Yang–Mills Fields, Lezioni Fermiane, Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa, 1979 | MR | Zbl

[6] T. Eguchi, P. B. Gilkey, A. J. Hanson, Phys. Rep., 66:6 (1980), 213–393 | DOI | MR

[7] M. F. Atiyah, V. K. Patodi, I. M. Singer, Math. Proc. Cambridge Philos. Soc., 77:1 (1975), 43–69 | DOI | MR | Zbl

[8] M. F. Atiyah, V. K. Patodi, I. M. Singer, Math. Proc. Cambridge Philos. Soc., 78:3 (1975), 405–432 | DOI | MR | Zbl

[9] M. Ouyang, Trans. Amer. Math. Soc., 346:2 (1994), 641–659 | DOI | MR | Zbl

[10] H. Pedersen, Y. S. Poon, Commun. Math. Phys., 136:2 (1991), 309–326 | DOI | MR | Zbl

[11] C. LeBrun, Commun. Math. Phys., 118:4 (1988), 591–596 | DOI | MR | Zbl