Cauchy–Jost function and hierarchy of integrable equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 2, pp. 272-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the properties of the Cauchy–Jost (also known as Cauchy–Baker–Akhiezer) function of the Kadomtsev–Petviashvili-II equation. Using the $\bar\partial$-method, we show that for this function, all equations of the Kadomtsev–Petviashvili-II hierarchy are given in a compact and explicit form, including equations for the Cauchy–Jost function itself, time evolutions of the Jost solutions, and evolutions of the potential of the heat equation.
Keywords: Cauchy–Jost function, inverse problem.
Mots-clés : KP-II equation
@article{TMF_2015_185_2_a2,
     author = {M. Boiti and F. Pempinelli and A. K. Pogrebkov},
     title = {Cauchy{\textendash}Jost function and hierarchy of integrable equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {272--288},
     year = {2015},
     volume = {185},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a2/}
}
TY  - JOUR
AU  - M. Boiti
AU  - F. Pempinelli
AU  - A. K. Pogrebkov
TI  - Cauchy–Jost function and hierarchy of integrable equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 272
EP  - 288
VL  - 185
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a2/
LA  - ru
ID  - TMF_2015_185_2_a2
ER  - 
%0 Journal Article
%A M. Boiti
%A F. Pempinelli
%A A. K. Pogrebkov
%T Cauchy–Jost function and hierarchy of integrable equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 272-288
%V 185
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a2/
%G ru
%F TMF_2015_185_2_a2
M. Boiti; F. Pempinelli; A. K. Pogrebkov. Cauchy–Jost function and hierarchy of integrable equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 2, pp. 272-288. http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a2/

[1] T. Miwa, M. Jimbo, E. Date, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge Tracts in Mathematics, 135, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[2] L. V. Bogdanov, B. G. Konopelchenko, J. Math. Phys., 39:9 (1998), 4683–4700 | DOI | MR | Zbl

[3] L. V. Bogdanov, B. G. Konopelchenko, J. Math. Phys., 39:9 (1998), 4701–4728 | DOI | MR | Zbl

[4] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR | Zbl

[5] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmannians, $\det \bar \partial_j$ and Segal–Wilson $\tau$-function”, Problems of Modern Quantum Field Theory, eds. A. A. Belavin, A. U. Klimyk, A. B. Zamolodchikov, Springer, Berlin, 1989, 86–106 | DOI | MR

[6] M. J. Ablowitz, D. Bar Yaacov, A. S. Fokas, Stud. Appl. Math., 69:2 (1983), 135 | DOI | MR | Zbl

[7] M. V. Wickerhauser, Commun. Math. Phys., 108:1 (1987), 67–89 | DOI | MR | Zbl

[8] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, Inverse Problems, 17:4 (2001), 937–957 | DOI | MR | Zbl

[9] M. Boiti, F. Pempinelli, A. K. Pogrebkov, J. Math. Phys., 35:9 (1994), 4683–4718 | DOI | MR | Zbl

[10] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, TMF, 159:3 (2009), 364–378 | DOI | MR | Zbl