Notion of blowup of the solution set of differential equations and averaging of random semigroups
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 2, pp. 252-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a unique approach to studying the violation of the well-posedness of initial boundary-value problems for differential equations. The blowup of the set of solutions of a problem for a differential equation is defined as a discontinuity of a multivalued map associating an initial boundary-value problem with the set of solutions of this problem. We show that such a definition not only describes effects of the solution destruction or its nonuniqueness but also permits prescribing a procedure for extending the solution through the singularity origination instant by using an appropriate random process. Considering the initial boundary-value problems whose solution sets admit singularities of the blowup type and a neighborhood of these problems in the space of problems permits associating the initial problem with the set of limit points of a sequence of solutions of the approximating problems. Endowing the space of problems with the structure of a space with measure, we obtain a random semigroup generated by the initial problem. We study the properties of the mathematical expectations (means) of a random semigroup and their equivalence in the sense of Chernoff to semigroups with averaged generators.
Keywords: boundary-value problem, blowup, dynamical system, semigroup, random dynamical system, Chernoff's theorem, averaging.
Mots-clés : $\Omega$-explosion
@article{TMF_2015_185_2_a1,
     author = {L. S. Efremova and V. Zh. Sakbaev},
     title = {Notion of blowup of the~solution set of differential equations and averaging of random semigroups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {252--271},
     year = {2015},
     volume = {185},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a1/}
}
TY  - JOUR
AU  - L. S. Efremova
AU  - V. Zh. Sakbaev
TI  - Notion of blowup of the solution set of differential equations and averaging of random semigroups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 252
EP  - 271
VL  - 185
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a1/
LA  - ru
ID  - TMF_2015_185_2_a1
ER  - 
%0 Journal Article
%A L. S. Efremova
%A V. Zh. Sakbaev
%T Notion of blowup of the solution set of differential equations and averaging of random semigroups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 252-271
%V 185
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a1/
%G ru
%F TMF_2015_185_2_a1
L. S. Efremova; V. Zh. Sakbaev. Notion of blowup of the solution set of differential equations and averaging of random semigroups. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 2, pp. 252-271. http://geodesic.mathdoc.fr/item/TMF_2015_185_2_a1/

[1] M. W. Hirsch, C. Pugh, “Stable manifolds and hyperbolic sets”, Global Analysis (University of California, Berkeley, CA, July 1–26, 1968), Proceedings of Symposia in Pure Mathematics, 14, eds. S.-S. Chern, S. Smale, AMS, Providence, 1970, 133–164 | DOI | MR

[2] J. Palis, Proc. Am. Math. Soc., 27:1 (1971), 85–90 | DOI | MR | Zbl

[3] M. Shub, S. Smail, Ann. Math., 96:3 (1972), 587–591 | DOI | MR | Zbl

[4] I. U. Bronshtein, Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984 | MR

[5] D. V. Anosov, S. Kh. Aranson, V. Z. Grines, R. V. Plykin, E. A. Sataev, A. V. Safronov, V. V. Solodov, A. N. Starkov, A. M. Stepin, S. V. Shlyachkov, “Dinamicheskie sistemy s giperbolicheskim povedeniem”, Dinamicheskie sistemy – 9, Itogi nauki i tekhniki. Sovrem. probl. matem. Fundam. napravl., 66, VINITI, M., 1991, 5–242 | MR | Zbl

[6] L. S. Efremova, Vestn. Nizhegorodskogo un-ta im. N. I. Lobachevskogo, 2012, no. 3(1), 130–136

[7] L. S. Efremova, “Otsutstvie $C^1$-$\Omega$-vzryva v prostranstve gladkikh prosteishikh kosykh proizvedenii”, Trudy VI Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam, Ch. 4 (Moskva, 14–21 avgusta, 2011), SMFN, 48, RUDN, M., 2013, 36–50 | DOI

[8] V. A. Galaktionov, S. P. Kurdyumov, A. G. Mikhailov, Rezhimy s obostreniem, Nauka, M., 1986

[9] S. I. Pokhozhaev, Dokl. AN SSSR, 165:1 (1965), 36–39 | Zbl

[10] S. N. Kruzhkov, Lektsii po uravneniyam s chastnymi proizvodnymi, MGU, M., 1970

[11] V. Zh. Sakbaev, “Zadacha Koshi dlya lineinogo differentsialnogo uravneniya s vyrozhdeniem i usrednenie approksimiruyuschikh ee regulyarizatsii”, Uravneniya v chastnykh proizvodnykh, SMFN, 43, RUDN, M., 2012, 3–172 | MR

[12] O. A. Oleinik, UMN, 12:3(75) (1957), 3–73 | MR | Zbl

[13] V. Zh. Sakbaev, Dokl. RAN, 419:2 (2008), 174–178 | MR | Zbl

[14] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Universitetskaya seriya, Novosibirsk, 1998 | DOI | MR | Zbl

[15] I. V. Volovich, V. Zh. Sakbaev, Tr. MIAN, 285 (2014), 64–88, arXiv: 1312.4302 | DOI | Zbl

[16] V. P. Burskii, Metody issledovaniya granichnykh zadach dlya obschikh differentsialnykh uravnenii, Naukova dumka, Kiev, 2002

[17] V. I. Oseledets, TVP, 10:3 (1965), 551–557 | DOI | MR | Zbl

[18] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1974 | MR | Zbl

[19] M. L. Blank, Ustoichivost i lokalizatsiya v khaoticheskoi dinamike, MTsNMO, M., 2001

[20] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, Tr. MIAN, 285 (2014), 232–243 | DOI | DOI | Zbl

[21] N. N. Bogolyubov, O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN SSSR, Kiev, 1945 | MR

[22] L. Accardi, Y. G. Lu, I. V. Volovich, Quantum Theory and Its Stochastic Limit, Springer, Berlin, 2002 | DOI | MR

[23] L. Accardi, A. N. Pechen, I. V. Volovich, J. Phys. A, 35:23 (2002), 4889–4902, arXiv: quant-ph/0108112 | DOI | MR | Zbl

[24] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, MGU, M., 2015

[25] V. K. Ivanov, I. V. Melnikova, A. I. Filinkov, Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Fizmatlit, M., 1995 | MR

[26] A. B. Bakushinskii, M. Yu. Kokurin, Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, URSS, M., 2002

[27] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR

[28] M. I. Vishik, V. V. Chepyzhev, Matem. sb., 200:4 (2009), 3–30 | DOI | DOI | MR | Zbl

[29] E. Mitidieri, S. I. Pokhozhaev, Tr. MIAN, 234 (2001), 3–383 | MR | Zbl

[30] V. Zh. Sakbaev, Tr. MIAN, 283 (2013), 171–187 | DOI | DOI | Zbl

[31] V. A. Galaktionov, J. L. Vazquez, Arch. Rational Mech. Anal., 129:4 (1995), 225–244 | DOI | MR | Zbl

[32] V. Zh. Sakbaev, Fundament. i prikl. matem., 12:6 (2006), 157–174 | DOI | MR | Zbl

[33] V. I. Bogachev, N. V. Krylov, M. Rekner, UMN, 64:6(390) (2009), 5–116 | DOI | MR | Zbl

[34] V. V. Zhikov, Funkts. analiz i ego pril., 35:1 (2001), 23–39 | DOI | DOI | MR | Zbl

[35] E. Yu. Panov, Matem. modelirovanie, 14:3 (2002), 17–26 | MR | Zbl

[36] R. J. Di Perna, P. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR

[37] N. Mizoguchi, F. Quiros, J. L. Vazquez, Math. Ann., 350:4 (2011), 811–827 | DOI | MR

[38] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | DOI | MR | Zbl

[39] A. A. Arsenev, O suschestvovanii invariantnykh mer na prostranstve reshenii evolyutsionnogo uravneniya, Preprint IPM im. M. V. Keldysha RAN No 73, IPM, M., 1976

[40] A. M. Vershik, O. A. Ladyzhenskaya, Dokl. AN SSSR, 226:1 (1976), 26–29 | MR | Zbl

[41] O. G. Smolyanov, H. von Weizsäcker, O. Wittich, Potential Anal., 26:1 (2007), 1–29 | DOI | MR | Zbl