Some properties of the shape-invariant two-dimensional Scarf II model
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 99-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the two-dimensional Scarf II quantum model in the framework of supersymmetric quantum mechanics. We systematize results previously obtained for this integrable system and derive some new properties. In particular, we show that the model is exactly or quasi-exactly solvable in different regions of the system parameter values. We find a degeneracy of the spectrum for some specific parameter values. We calculate the action of symmetry operators of the fourth order in momenta for arbitrary wave functions obtained using the double shape invariance.
Keywords: supersymmetry, shape invariance, integrable model, exact solvability, intertwining relation.
@article{TMF_2015_185_1_a8,
     author = {M. V. Ioffe and E. V. Kolevatova and D. N. Nishnianidze},
     title = {Some properties of the~shape-invariant two-dimensional {Scarf~II} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {99--108},
     year = {2015},
     volume = {185},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a8/}
}
TY  - JOUR
AU  - M. V. Ioffe
AU  - E. V. Kolevatova
AU  - D. N. Nishnianidze
TI  - Some properties of the shape-invariant two-dimensional Scarf II model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 99
EP  - 108
VL  - 185
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a8/
LA  - ru
ID  - TMF_2015_185_1_a8
ER  - 
%0 Journal Article
%A M. V. Ioffe
%A E. V. Kolevatova
%A D. N. Nishnianidze
%T Some properties of the shape-invariant two-dimensional Scarf II model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 99-108
%V 185
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a8/
%G ru
%F TMF_2015_185_1_a8
M. V. Ioffe; E. V. Kolevatova; D. N. Nishnianidze. Some properties of the shape-invariant two-dimensional Scarf II model. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 99-108. http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a8/

[1] F. Cooper, A. Khare, U. Sukhatme, Phys. Rep., 251:5–6 (1995), 267–385, arXiv: ; G. Junker, Supersymmetric Methods in Quantum and Statistical Physics, Springer, Berlin, 1996 ; B. K. Bagchi, Supersymmetry in Quantum and Classical Mechanics, Chapman, Boca Raton, FL, 2001 ; J. D. Fernández C, AIP Conf. Proc., 1287 (2010), 3–36, arXiv: ; A. A. Andrianov, M. V. Ioffe, J. Phys. A: Math. Theor., 45:50 (2012), 503001, 62 pp., arXiv: hep-th/94050290910.01921207.6799 | DOI | MR | MR | Zbl | MR | Zbl | DOI | DOI | MR | Zbl

[2] A. A. Andrianov, N. V. Borisov, M. V. Ioffe, Pisma v ZhETF, 39:2, 78–81 ; ТМФ, 61:2 (1984), 183–198 ; A. A. Andrianov, N. V. Borisov, M. V. Ioffe, Phys. Lett. A, 105:1–2 (1984), 19–22 ; A. A. Andrianov, N. V. Borisov, M. I. Eides, M. V. Ioffe, Phys. Lett. A, 109:4 (1985), 143–148 ; А. А. Андрианов, Н. В. Борисов, М. В. Иоффе, М. И. Эйдес, ТМФ, 61:1 (1984), 17–28 | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[3] A. A. Andrianov, M. V. Ioffe, Phys. Lett. B, 205:4 (1988), 507–510 ; M. V. Ioffe, A. I. Neelov, J. Phys. A: Math. Gen., 36:10 (2003), 2493–2506, arXiv: hep-th/0302004 | DOI | MR | DOI | MR | Zbl

[4] A. A. Andrianov, M. V. Ioffe, D. N. Nishnianidze, Phys. Lett. A, 201:1 (1995), 103–110, arXiv: ; “Higher order SUSY in quantum mechanics and integrability of two-dimensional Hamiltonians”, arXiv: ; J. Phys. A: Math. Gen., 32:25 (1999), 4641–4654 ; А. А. Андрианов, М. В. Иоффе, Д. Н. Нишнианидзе, ТМФ, 104:3 (1995), 463–478 hep-th/9404120solv-int/9605007 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[5] M. S. Bardavelidze, M. V. Ioffe, D. N. Nishnianidze, Phys. Lett. A, 377:3–4 (2013), 195–199, arXiv: 1211.1461 | DOI | MR | Zbl

[6] L. E. Gendenshgtein, Pisma v ZhETF, 38:6 (1983), 299–302

[7] A. A. Andrianov, F. Cannata, M. V. Ioffe, D. N. Nishnianidze, Phys. Lett. A, 266:4–6 (2000), 341–349 ; J. Bougie, A. Gangopadhyaya, J. V. Mallow, Phys. Rev. Lett., 105:21 (2010), 210402, 4 pp. | DOI | MR | Zbl | DOI | MR

[8] J. W. Dabrowska, A. Khare, U. P. Sukhatme, J. Phys. A: Math. Gen., 21:4 (1988), L195–L200 | DOI | MR

[9] C. Quesne, J. Phys. A: Math. Theor., 41:39 (2008), 392001, 6 pp. ; F. Cannata, M. V. Ioffe, E. V. Kolevatova, D. N. Nishnianidze, Ann. Phys., 356 (2015), 438–451 | DOI | MR | Zbl | DOI | MR | Zbl

[10] F. Cannata, M. V. Ioffe, D. N. Nishnianidze, J. Phys. A: Math. Gen., 35 (2002), 1389–1404 | DOI | MR | Zbl

[11] F. Cannata, M. V. Ioffe, D. N. Nishnianidze, J. Math. Phys., 52:2 (2011), 022106, 9 pp. | DOI | MR | Zbl

[12] M. V. Ioffe, J. Phys. A: Math. Gen., 37:43 (2004), 10363–10374 | DOI | MR | Zbl

[13] M. V. Ioffe, SIGMA, 6 (2010), 075, 10 pp., arXiv: 1009.4764 | DOI | MR | Zbl

[14] M. V. Ioffe, D. N. Nishnianidze, Phys. Rev. A, 76:5 (2007), 052114, 5 pp. | DOI | MR | Zbl

[15] M. V. Ioffe, P. A. Valinevich, J. Phys. A: Math. Gen., 38:11 (2005), 2497–2510, arXiv: ; M. V. Ioffe, D. N. Nishnianidze, P. A. Valinevich, J. Phys. A: Math. Theor., 43:48 (2010), 485303, 17 pp. hep-th/0409153 | DOI | MR | Zbl | DOI | MR | Zbl

[16] F. L. Scarf, Phys. Rev., 112:4 (1958), 1137–1140 | DOI | MR | Zbl

[17] A. V. Turbiner, Commun. Math. Phys., 118:3 (1988), 467–474 ; A. G. Ushveridze, Quasi-Exactly Solvable Problems in Quantum Mechanics, Institute of Physics Publishing, Bristol, 1994 ; M. A. Shifman, A. V. Turbiner, Commun. Math. Phys., 126:2 (1989), 347–365 | DOI | MR | Zbl | MR | DOI | MR | Zbl

[18] M. V. Ioffe, E. V. Krupitskaya, D. N. Nishnianidze, Ann. Phys., 327:3 (2012), 764–773 | DOI | MR | Zbl

[19] G. Beitmen, A. Erdeii, Vysshie trantsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[20] M. V. Ioffe, E. V. Krupitskaya, D. N. Nishnianidze, Europhys. Lett., 98:1 (2012), 10013, 6 pp., arXiv: 1203.3076 | DOI | MR

[21] W. Miller Jr., Symmetry and Separation of Variables, Addison-Wesley, London, 1977 | MR | Zbl

[22] S. Wolfram, Mathematica. Ver. 10.0, Wolfram Research, Champaign, IL, 2014 | MR