Quantum particle in a random medium
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 86-98
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe the behavior of a quantum particle in a random medium using the Green's function in the functional integral representation and propose methods for evaluating it. We calculate the localization length in the case of motion in a disordered medium and in a medium described by a random Gaussian-type potential. We consider the motion of the quantum particle in the quantized-field vacuum and show the difference between the relativistic and nonrelativistic approaches.
Keywords:
quantum mechanics, random medium, localization length, Green's function, functional integral, nonrelativistic dynamics, relativistic dynamics.
@article{TMF_2015_185_1_a7,
author = {G. V. Efimov},
title = {Quantum particle in a~random medium},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {86--98},
year = {2015},
volume = {185},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a7/}
}
G. V. Efimov. Quantum particle in a random medium. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 86-98. http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a7/
[1] P. W. Anderson, Phys. Rev., 109:5 (1958), 1492–1505 | DOI
[2] B. Kramer, A. MacKinnon, Rep. Progr. Phys., 56:12 (1993), 1469–1564 | DOI
[3] G. Bergman, Phys. Rep., 107:1 (1984), 1–58 | DOI
[4] V. L. Bonch-Bruevich, I. P. Zvyagin, R. Kaiper, A. G. Mironov, R. Enderlain, B.-M. Esser, Elektronnaya teoriya neuporyadochennykh poluprovodnikov, Nauka, M., 1981
[5] I. M. Lifshits, S. A. Gredeskul, L. A. Pastur, Vvedenie v teoriyu neuporyadochennykh sistem, Nauka, M., 1982 | MR | MR
[6] P. A. Lee, T. V. Ramakrishnan, Rev. Modern Phys., 57:2 (1985), 287–338 | DOI
[7] N. A. Vlasov, Neitrony, GITTL, M., 1955
[8] G. V. Efimov, TMF, 179:3 (2014), 367–386 | DOI | DOI | MR | Zbl