Orthogonal polynomials and deformed oscillators
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 68-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the example of the Fibonacci oscillator, we discuss the construction of oscillator-like systems associated with orthogonal polynomials. We also consider the question of the dimensions of the corresponding Lie algebras.
Keywords: generalized oscillator, Fibonacci number, algebra of oscillator-like systems.
Mots-clés : orthogonal polynomial
@article{TMF_2015_185_1_a5,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Orthogonal polynomials and deformed oscillators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {68--76},
     year = {2015},
     volume = {185},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a5/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - Orthogonal polynomials and deformed oscillators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 68
EP  - 76
VL  - 185
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a5/
LA  - ru
ID  - TMF_2015_185_1_a5
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T Orthogonal polynomials and deformed oscillators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 68-76
%V 185
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a5/
%G ru
%F TMF_2015_185_1_a5
V. V. Borzov; E. V. Damaskinsky. Orthogonal polynomials and deformed oscillators. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 68-76. http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a5/

[1] P. P. Kulish, N. Yu. Reshetikhin, Zap. nauchn. semin. LOMI, 101 (1981), 101–110 | DOI | MR

[2] L. D. Faddeev, L. A. Takhtajan, “Liouville model on the lattice”, Field Theory, Quantum Gravity and Strings, Lecture Notes in Physics, 246, eds. H. J. de Vega, N. Sánchez, Springer, Berlin, 1986, 166–179 | DOI | MR

[3] N. Yu. Reshetikhin, L. A. Takhtadzhan, L. D. Faddeev, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl

[4] V. G. Drinfel'd, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, August 3–11, 1986), v. 1, ed. A. M. Gleason, AMS, Providence, RI, 1987, 798–820 | MR

[5] L. C. Biedenharn, J. Phys. A: Math. Gen., 22:18 (1989), L873–L878 | DOI | MR | Zbl

[6] A. J. Macfarlane, J. Phys. A: Math. Gen., 22:21 (1989), 4581–4588 | DOI | MR | Zbl

[7] P. P. Kulish, E. V. Damaskinsky, J. Phys. A: Math. Gen., 23:9 (1990), L415–L419 | DOI | MR | Zbl

[8] E. V. Damaskinskii, P. P. Kulish, Zap. nauchn. semin. LOMI, 189 (1991), 37–74, Nauka, SPb. | DOI | MR | Zbl

[9] G. Iwata, Prog. Theoret. Phys., 6:4 (1951), 524–528 | DOI | MR

[10] V. V. Kuryshkin, “Ob odnom obobschenii operatorov rozhdeniya i unichtozheniya v kvantovoi teorii (U. kvantovaniya)”, deponent VINITI SSSR 15 3936-76, 1976; V. V. Kuryshkin, Ann. Found. L. de Broglie, 5 (1980), 111–126

[11] J. Cigler, Monatsh. Math., 88:2 (1979), 87–105 | DOI | MR | Zbl

[12] A. Jannussis, G. Bbodimas, D. Sourlas, L. Papaloucas, K. Vlachos, P. Siafaricas, Hadronic J., 6:6 (1983), 1653–1686 | MR

[13] M. Arik, D. D. Coon, J. Math. Phys., 17:4 (1976), 524–527 | DOI | MR

[14] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their $q$-Analogues, Springer, Berlin, 2010 | MR | Zbl

[15] V. V. Borzov, Integral Transf. Spec. Funct., 12:2 (2001), 115–138 | DOI | MR | Zbl

[16] V. E. Hoggatt, Jr., D. A. Lind, Fibonacci Quart., 7:5 (1969), 482–487 | MR | Zbl

[17] A. M. Oller, The dying rabbit problem revisited, arXiv: 0710.2216 | MR

[18] N. N. Vorobev, Chisla Fibonachchi, Nauka, M., 1964 | MR

[19] R. Askey, Math. Teacher, 97:2 (2004), 116–119

[20] R. Askey, Math. Teacher, 98:9 (2005), 610–615

[21] M. E. H. Ismail, One parameter generalizations of the Fibonacci and Lucas polynomials, arXiv: math/0606743 | MR

[22] T. M. Richardson, Fibonacci Quart., 39:3 (2001), 268–275 | MR | Zbl

[23] C. Berg, Arab. J. Math. Sci., 17:2 (2011), 75–88, arXiv: math/0609283 | DOI | MR | Zbl

[24] E. V. Damaskinskii, V. V. Borzov, “Ostsillyator Fibonachchi”, Kvantovaya teoriya i kosmologiya, Cbornik statei, posvyaschennyi 70-letiyu professora A. A. Griba, Lab. teor. fiz. im. A. A. Fridmana, SPb., 2009, 54–65

[25] M. Arik, E. Demircan, T. Turgut, L. Ekinci, M. Mungan, Z. Phys. C., 55:1 (1992), 89–95 | DOI | MR

[26] R. Chakrabarti, R. Jagannathan, J. Phys. A: Math. Gen., 24:13 (1991), L711–L718 | DOI | MR | Zbl

[27] J. de Souza, E. M. F. Curado, M. A. Rego-Monteiro, J. Phys. A: Math. Gen., 39:33 (2006), 10415–10425 | DOI | MR | Zbl

[28] M. Schork, J. Phys. A: Math. Theor., 40:15 (2007), 4207–4214 | DOI | MR | Zbl

[29] G. Honnouvo, K. Thirulogasanthar, J. Math. Phys., 55:9 (2014), 093511, 13 pp., arXiv: 1305.2509 | DOI | MR | Zbl

[30] V. V. Borzov, E. V. Damaskinsky, “On dimensions of oscillator algebras”, Proceedings of Days on Diffraction (St. Petersburg, Russia, 26–30, May 2014), eds. O. V. Motygin, A. P. Kiselev, L. I. Goray, A. Ya. Kazakov, A. S. Kirpichnikova, IEEE, New York, 2014, 48–52 | DOI